Marine Biology

, Volume 160, Issue 5, pp 1177–1188 | Cite as

Concentration of ascorbic acid and antioxidant response in early life stages of Engraulis ringens and zooplankton during the spawning seasons of 2006–2009 off central Chile

  • M. C. Krautz
  • L. R. Castro
  • M. González
  • A. Llanos-Rivera
  • I. Montes
  • H. González
  • R. R. González
  • J. C. Vera
Original Paper


This study reports changes in ascorbic acid (AA) in anchoveta eggs, copepods and zooplankton during the 2006, 2007 and 2009 main spawning seasons in the coastal area of the central Humboldt Current System, Chile. Anchoveta eggs, copepods and total zooplankton community shared a seasonal variation and an increasing trend in AA concentration from winter through spring which was associated with the spring diatom bloom. The lineal relationship observed between AA concentration in anchoveta eggs, chlorophyll a and Sea Surface Temperature (SST) suggests that the increase in phytoplankton abundance could also increase the amount of AA in the spawning female anchoveta incorporated through tissue, thus increasing the concentration in their eggs. Ascorbic acid concentrations in copepods presented size (weight) dependence. Small copepods (e.g. Acartia, Oithona) had AA concentrations two orders of magnitude higher than the heavier weight class copepods (e.g. Calanus, Rhincalanus). Results of the determination of glutathione and the antioxidant potential showed a similar trend in interannual variations, suggesting that cold SST conditions observed in the 2007 spawning season could increase the consumption of antioxidants in early stages. Potential connections between AA concentration in the food web on anchoveta reproduction and egg hatching and embryo malformations are discussed.


Ascorbic Acid Weight Class Ascorbic Acid Concentration Spawning Season Frap Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank to their colleagues at LOPEL for their cooperation in experimental and field work and P. Bustos, I. Muñoz, P. Salgado and K. Toledo for their important support in analytical issues. Financial support was provided by a CONICYT doctoral fellowship to MCK, a CONICYT Thesis Research Grant 24080047; the Graduate School of the Universidad de Concepción, a supplement Thesis Fellowship from FONDAP-COPAS, and the Grants FONDECYT 1070502 and 110534 to LRC and GC. Support for equipment was also obtained from the International Foundation of Science (Grant AA 3643-1 to MCK).


  1. Aguilera VM, Donoso K, Escribano R (2011) Reproductive performance of small sized dominant copepods with a highly variable food resource in the coastal upwelling system off the chilean humboldt current. Mar Biol Res 7(3):235–249CrossRefGoogle Scholar
  2. Anabalon V, Morales CE, Escribano R, Varas MA (2007) The contribution of nano- and micro-planktonic assemblages in the surface layer (0–30 m) under different hydrographic conditions in the upwelling area off Concepción, central Chile. Prog Oceanogr 75:396–414CrossRefGoogle Scholar
  3. Badrakhan CD, Petrat F, Holzhauser M, Fuchs A, Lomonosova EE, De Groot H, Kirsch M (2004) The methanol method for the quantification of ascorbic acid and dehydroascorbic acid in biological samples. J Biochem Biophys Methods 58:207–218CrossRefGoogle Scholar
  4. Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of ‘‘antioxidant power’’: the FRAP assay. Anal Biochem 239:70–76CrossRefGoogle Scholar
  5. Blom JH, Dabrowski K (1995) Reproductive success of female rainbow trout (Oncorhynchus mykiss) in response to graded dietary ascorbyl monophosphate levels. Biol Reprod 52:1073–1080CrossRefGoogle Scholar
  6. Böttjer D, Morales CE (2007) Nanoplanktonic assemblages in the upwelling area off Concepción (36 ºS), central Chile: abundance, biomass, and grazing potential during the annual cycle. Progr Oceanogr 75:415–434CrossRefGoogle Scholar
  7. Brown MR, Lavens P (2001) Critical review of the concentration, interactions with other nutrients and transfer of ascorbic acid in algae, crustaceans and fish. In: Dabrowski K (ed) Ascorbic acid in Aquatic Organisms. Status and Perspectives. CRS Press, USA, pp 167–189Google Scholar
  8. Brown MR, Miller KA (1992) The ascorbic acid content of eleven species of microalgae used in mariculture. J Appl Phycol 4:205–215CrossRefGoogle Scholar
  9. Cahu C, Infante JZ, Takeuchi T (2003) Nutritional components affecting skeletal development in fish larvae. Aquaculture 227(1–4):254–258Google Scholar
  10. Castro LR, Claramunt G, Krautz MC, Llanos-Rivera A, Moreno P (2009) Egg trait variation in anchoveta Engraulis ringens: a maternal response to changing environmental conditions in contrasting spawning habitats. Mar Ecol Prog Ser 381:237–248CrossRefGoogle Scholar
  11. Castro LC, Claramunt G, González HE, Krautz MC, Llanos-Rivera A, Méndez J, Schneider W, Soto S (2010) Fatty acids in eggs of anchoveta Engraulis ringens during two contrasting winter spawning seasons. Mar Ecol Prog Ser 420:193–205CrossRefGoogle Scholar
  12. Cowey CB, Bell JD, Knox D, Fraser A, Youngson A (1985) Lipids and lipid antioxidant systems in developing eggs of salmon (Salmo salar). Lipids 20(9):567–572CrossRefGoogle Scholar
  13. Cubillos L, Canales M, Bucarey D, Rojas A, Alarcon R (1999) Epoca reproductiva y talla media de primera madurez sexual de Strangomera bentincki y Engraulis ringens en la zona centro-sur de Chile en el periodo 1993–1997. Invest Mar Valparaiso 27:73–86Google Scholar
  14. Dabrowski K (1991) Ascorbic acid status in high-mountain charr, Salvelinus alpinus, in relation to the reproductive cycle. Environ Biol Fish 31:213–217CrossRefGoogle Scholar
  15. Dabrowski K, Blom JH (1994) Ascorbic acid deposition in rainbow trout (Oncorhynchus mykiss) eggs and survival of embryos. Comp Biochem Physiol 108A(1):129–135CrossRefGoogle Scholar
  16. Daneri G, Dellarossa V, Quiñones R, Jacob B, Montero P, Ulloa O (2000) Primary production and community respiration in the humboldt current system off Chile and associated oceanic areas. Mar Ecol Prog Ser 197:41–49CrossRefGoogle Scholar
  17. Darias MJ, Mazurais D, Koumoundouros G, Cahu CL, Zambonino-Infante JL (2011) Overview of vitamin D and C requirements in fish and their influence on the skeletal system. Aquaculture 315:49–60CrossRefGoogle Scholar
  18. Escribano R, Hidalgo P, González H, Giesecke R, Riquelme-Bugueño R, Manríquez K (2007) Seasonal and inter-annual variation of mesozooplankton in the coastal upwelling zone off central-southern Chile. Progr Oceanogr 75(3):470–485CrossRefGoogle Scholar
  19. Gabaudan J, Verlhac V (2001) Critical review of the requirements of ascorbic acid in cold and cool water fishes (salmonids, percids, plecoglossids and flatfishes). In: Dabrowski K (ed) Ascorbic acid in Aquatic Organisms. Status and Perspectives. CRS Press, USA, pp 33–48Google Scholar
  20. Griffin SP, Bhagoolib R (2004) Measuring antioxidant potential in corals using the FRAP assay. J Exp Mar Biol Ecol 302:201–211CrossRefGoogle Scholar
  21. Griffith OW (1980) Determination of gluthatione and gluthatione disulfide using gluthatione reductase and 2-vinylpyridine. Anal Biochem 106(1):207–212CrossRefGoogle Scholar
  22. Hammer, Ø, Harper, DAT, Ryan PD (2001) PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol Electron 4(1): 9.
  23. Hamre K, Waagbø R, Berge RK, Lie Ø (1997) Vitamins c and e interact in juvenile Atlantic Salmon (Salmo salar, L.). Free Radic Biol Med 22(1/2):137–149CrossRefGoogle Scholar
  24. Hapette AM, Coombs S, Williams R, Poulet SA (1991) Variation in vitamin C content of sprat larvae (Sprattus sprattus) in the Irish Sea. Mar Biol 108:39–48CrossRefGoogle Scholar
  25. Happette AM, Poulet S (1990) Variation of vitamin C in some common species of marine zooplankton. Mar Ecol Prog Ser 64:69–79CrossRefGoogle Scholar
  26. Kalaimani N, Chakravarthy N, Shanmugham R, Thirunavukkarasu AR, Alavandi SV, Santiago TC (2008) Anti-oxidant status in embryonic, post-hatch and larval stages of Asian seabass (Lates calcarifer). Fish Physiol Biochem 34:151–158CrossRefGoogle Scholar
  27. Krautz MC, Vásquez S, Castro LR, González M, Llanos-Rivera A, Pantoja S (2010) Changes in metabolic substrates during early development in anchoveta Engraulis ringens (Jenyns 1842) in the humboldt current. Mar Biol 157:1137–1149CrossRefGoogle Scholar
  28. Krautz MC, Castro LR, González M, Vera JC, González HE (2012) Concentration of ascorbic acid and innate immune effectors in Engraulis ringens and Strangomera bentincki during their main spawning period (2007–2008) in the humboldt current system off Chile. Mar Biol 159:303–317CrossRefGoogle Scholar
  29. Lall SP, Lewis-McCrea LM (2007) Role of nutrients in skeletal metabolism and pathology in fish—An overview. Aquaculture 267:3–19CrossRefGoogle Scholar
  30. Leggatt RA, Brauner CJ, Schulte PM, Iwama GK (2007) Effects of acclimation and incubation temperature on the glutathione antioxidant system in killifish and RTH-149 cells. Comp Biochem Physiol A: Mol Integr Physiol 146(3):317–326CrossRefGoogle Scholar
  31. Llanos-Rivera A, Castro LR (2004) Latitudinal and seasonal egg-size variation of the anchoveta (Engraulis ringens) off the Chilean coast. Fish Bull 102:207–212Google Scholar
  32. Manriquez K, Escribano R, Hidalgo P (2009) The influence of coastal upwelling on the mesozooplankton community structure in the coastal zone off Central/Southern Chile as assessed by automated image analysis. J Plankton Res 31(9):1075–1088CrossRefGoogle Scholar
  33. Martinez-Alvarez RM, Morales A, Sanz A (2005) Antioxidant defenses of fish: biotic and abiotic factors. Rev Fish Biol Fish 15:75–88CrossRefGoogle Scholar
  34. Moeslinger T, Brunner M, Spieckermann PG (1994) Spectrophotometric determination of dehydroascorbic acid in biological samples. Anal Biochem 221:290–296CrossRefGoogle Scholar
  35. Moeslinger T, Brunner M, Volf I, Spieckermann PG (1995) Spectrophotometric determination of ascorbic acid and dehydroascorbic acid. Clin Chem 41:1177–1181Google Scholar
  36. Poulet S, Happette AS, Cole RB, Tablet JC (1989) Vitamin C in marine copepods. Limnol Oceanogr 34(7):1325–1331CrossRefGoogle Scholar
  37. Sandnes K, Braekkan OR (1981) Ascorbic acid and the reproductive cycle of ovaries in cod (Gadus morhua). Comp Biochem Physiol 70A:545–546CrossRefGoogle Scholar
  38. Sobarzo M, Bravo L, Donoso D, Garcés-Vargas J, Schneider W (2007) Coastal upwelling and seasonal cycles that influence the water column over the continental shelf off central Chile. Progr Oceanogr 75:363–382CrossRefGoogle Scholar
  39. Van der Meeren T, Olsen RE, Hamre K, Fyhn HJ (2008) Biochemical composition of copepods for evaluation of feed quality in production of juvenile marine fish. Aquaculture 274:375–397CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. C. Krautz
    • 1
    • 2
  • L. R. Castro
    • 2
    • 3
  • M. González
    • 4
  • A. Llanos-Rivera
    • 6
  • I. Montes
    • 1
    • 8
  • H. González
    • 3
    • 5
  • R. R. González
    • 3
    • 6
  • J. C. Vera
    • 7
  1. 1.Programa de Postgrados en Oceanografía, Departamento de OceanografíaUniversidad de ConcepciónConcepciónChile
  2. 2.Laboratorio de Oceanografía Pesquera y Ecología Larval (LOPEL), Departamento de OceanografíaUniversidad de ConcepciónConcepciónChile
  3. 3.Centro FONDAP- COPAS, COPAS Sur-AustralUniversidad de ConcepciónConcepciónChile
  4. 4.Departamento de Bioquímica Clínica e Inmunología, Facultad de FarmaciaUniversidad de ConcepciónConcepciónChile
  5. 5.Instituto de Ciencias Marinas y LimnológicasUniversidad Austral de ChileValdiviaChile
  6. 6.Unidad de Biotecnología Marina, Facultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile
  7. 7.Departamento de Fisiopatología, Facultad de Ciencias BiológicasUniversidad de ConcepciónConcepciónChile
  8. 8.Helmoholtz Center for Oceanic ResearchKielGermany

Personalised recommendations