Marine Biology

, Volume 160, Issue 5, pp 1147–1156 | Cite as

How age and sex drive the foraging behaviour in the king penguin

  • Maryline Le Vaillant
  • Céline Le Bohec
  • Onésime Prud’Homme
  • Barbara Wienecke
  • Yvon Le Maho
  • Akiko Kato
  • Yan Ropert-Coudert
Original Paper

Abstract

As predicted by life history theory, once recruited into the breeding population and with increasing age, long-lived animals should be able to manage more efficiently the conflict between self-maintenance and reproduction. Consequently, breeding performances should improve with age before stabilizing at a certain level. Using temperature–depth recorders and isotopic analysis, we tested how age affects the foraging behaviour of king penguin Aptenodytes patagonicus during one trip in the chick-rearing phase. Depending on sex and age, king penguins expressed two different foraging strategies. Older birds gained more daily mass per unit body mass than younger ones. Older females conducted shorter trips, dived deeper and performed more prey pursuits. They also had higher blood levels of δ15N than younger individuals and males indicating sex- and age-specific dietary regimes. However, we found no differences in carbon isotopic signature, suggesting that individuals exploited the same foraging areas independently of sex and age. Our results suggest that king penguins are able to increase the quantity of energy extracted with increasing age and that such a strategy is sex-related. Our study is the first to reveal of an interaction between age and sex in determining foraging efficiency in king penguins.

Supplementary material

227_2013_2167_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 19 kb)

References

  1. Angelier F, Bost C-A, Gireaudeau M, Bouteloup G, Dano S, Chastel O (2008) Corticosterone and foraging behavior in a diving seabird: the Adélie penguin, Pygoscelis adeliae. Gen Comp Endocr 156:134–144CrossRefGoogle Scholar
  2. Awkerman JA, Hobson KA, Anderson DJ (2007) Isotopic (δ15N and δ13C) evidence for intersexual foraging differences and temporal variation in habitat use in waved albatrosses. Can J Zool 85:273–279CrossRefGoogle Scholar
  3. Bannasch R, Wilson RP, Culik B (1994) Hydrodynamic aspects of design and attachment of a back-mounted device in penguins. J Exp Biol 194:83–96Google Scholar
  4. Barrat A (1976) Quelques aspects de la biologie et de l’écologie du manchot royal Aptenodytes patagonicus des Iles Crozet. Comité National Français des Recherches Antarctiques 40:107–147Google Scholar
  5. Bearhop S, Waldron S, Votier SC, Furness RW (2002) Factors that influence assimilation rates and fractionation of nitrogen and carbon stable isotopes in avian blood and feathers. Physiol Biochem Zool 75:451–458CrossRefGoogle Scholar
  6. Bost C-A, Georges J-Y, Guinet C, Cherel Y, Putz K, Charrassin J-B, Handrich Y, Zorn T, Large J, LeMaho Y (1997) Foraging habitat and food intake of satellite-tacked king penguins during the austral summer at Crozet Archipelago. MEPS 150:21–33CrossRefGoogle Scholar
  7. Bost C-A, Handrich Y, Butler P, Falhman A, Halsey LG, Woakes AJ, Ropert-Coudert Y (2007) Changes in dive profiles as an indicator of feeding success in king and Adélie penguins. Deep-Sea Res II 54:248–255CrossRefGoogle Scholar
  8. Brandt CA (1984) Age and hunting success in the brown pelican—influences of skill and patch choice on foraging efficiency. Oecologia 62(1):132–137CrossRefGoogle Scholar
  9. Burnham KP, Anderson DR (1998) Model selection and inference: a practical–theoric approach. Springer, New YorkCrossRefGoogle Scholar
  10. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  11. Charrassin JB, Bost C-A (2001) Utilisation of the oceanic habitat by king penguins over the annual cycle. MEPS 221:285–297CrossRefGoogle Scholar
  12. Charrassin JB, Bost C-A, Pütz K, Lage J, Dahier T, Zorn T, Le Maho Y (1998) Foraging strategies of incubating and brooding king penguin, Aptenodytes patagonicus. Oecologia 114:194–201CrossRefGoogle Scholar
  13. Charrassin JB, Le Maho Y, Bost C-A (2002) Seasonal changes in the diving parameters of king penguins (Aptenodytes patagonicus). Mar Biol 141:581–589CrossRefGoogle Scholar
  14. Cherel Y, Ridoux V (1992) Prey species and nutritive value of food fed during summer to king penguin Aptenodytes patagonica chicks at Possession Island, Crozet Archipelago. Ibis 134:118–127CrossRefGoogle Scholar
  15. Cherel Y, Hobson KA, Bailleul F, Groscolas R (2005) Nutrition, physiology and stable isotopes: new information from fasting and molting penguins. Ecology 86:2881–2888CrossRefGoogle Scholar
  16. Cherel Y, Fontaine C, Richard P, Labat J-P (2010) Isotopic niches and trophic levels of myctophid fishes and their predator in the Southern Ocean. Limnol Oceanogr 55:324–332CrossRefGoogle Scholar
  17. Clarke J, Kerry K (1998) Implanted transponders in penguins: implantation, reliability, and long term effects. J Field Ornithol 69:149–159Google Scholar
  18. Cottin M, Kato A, Thierry A-M, Le Maho Y, Raclot T, Ropert-Coudert Y (2011) Does corticosterone affect diving behavior of male Adélie penguins? A preliminary experimental study. Ornithol Sc 10:1–9CrossRefGoogle Scholar
  19. Daunt F, Wanless S, Harris MP, Money L, Monaghan P (2007) Older and wiser: improvements in breeding success are linked to better performance in European shags. Funct Ecol 21:561–567CrossRefGoogle Scholar
  20. DeForest LN, Gaston AJ (1996) The effect of age on timing of breeding and reproductive success in the thick-billed murre. Ecol 77(5):1501–1511Google Scholar
  21. Descamps S, Gauthier-Clerc M, Gendner J-P, Le Maho Y (2002) The annual breeding cycle of unbanded king penguins Aptenodytes patagonicus on Possession Island (Crozet). Avian Sci 2:87–98Google Scholar
  22. Forero MG, Hobson KA, Bortolotti GR, Donazar JA, Bertellotti M, Blanco G (2002) Food resource utilisation by the Magellanic penguin evaluated through stable-isotope analysis: segregation by sex and age and influence on offspring quality. MEPS 234:289–299CrossRefGoogle Scholar
  23. Forero MG, González-Solís J, Hobson KA, Doncazar JA, Bertellotti M, Blanco G, Bortolotti GR (2005) Stable isotopes reveal trophic segregation by sex and age in the southern giant petrel in two different food webs. MEPS 296:107–113CrossRefGoogle Scholar
  24. Forslund P, Pärt T (1995) Age and reproduction in birds-hypotheses and tests. Tree 10:374–378Google Scholar
  25. Froget G, Gauthier-Clerc M, Le Maho Y, Handrich Y (1998) Is penguin banding harmless? Polar Biol 20:406–413CrossRefGoogle Scholar
  26. Gentry RL, Kooyman GL (1986) Methods of dive analysis. In: Gentry RL, Kooyman GL (eds) Fur seals: maternal strategies on land and at sea. Princeton University Press, New Jersey, pp 28–40Google Scholar
  27. González-Solís J, Croxall P, Wood AG (2000) Sexual dimorphism and sexual segregation in foraging strategies of northern giant petrels Macronectes halli during incubation. Oikos 90:390–398CrossRefGoogle Scholar
  28. Goutte A, Antoine E, Weimerskirch H, Chastel O (2010) Age and the timing of breeding in a long-lived bird: a role for stress hormones? Func Ecol 24:1007–1016CrossRefGoogle Scholar
  29. Griffiths R, Double MC, Orr K, Dawson RJG (1998) A DNA test to sex most birds. Mol Ecol 7:1071–1075CrossRefGoogle Scholar
  30. Hanuise N, Bost C-A, Huin W, Auber A, Halsey LG, Handrich Y (2010) Measuring foraging activity in a deep-diving bird: comparing wiggles, oesophageal temperatures and beak-opening angles as proxies of feeding. J Exp Biol 213:3874–3880CrossRefGoogle Scholar
  31. Hobson KA, Clark RG (1993) Turnover of 13C in cellular and plasma fractions of blood: implications for nondestructive sampling in avian dietary studies. Auk 110:638–641CrossRefGoogle Scholar
  32. Hobson KA, Gibbs HL, Gloutney ML (1997) Preservation of blood and tissue samples for stable-carbon and stable nitrogen analysis. Can J Zool 75:1720–1723CrossRefGoogle Scholar
  33. Kato A, Watanuki Y, Shaughnessy P, Le Maho Y, Naito Y (1999) Intersexual differences in the diving behaviour of foraging subantarctic cormorant (Phalacrocorax albiventer) and Japanese cormorant (P. filamentosus). Comptes rendu de l’Académie des Sciences Serie III Sciences de la Vie Life Sci 322:557–562Google Scholar
  34. Kato A, Watanuki Y, Nishiumi I, Kuroki M, Shaughnessy P, Naito Y (2000) Variation in foraging and parental behavior of King Cormorants. Auk 117:718–730Google Scholar
  35. Kato A, Ropert-Coudert Y, Gremillet D, Cannell B (2006) Locomotion and foraging strategy in foot-propelled and wing-propelled shallow-diving seabirds. MEPS 308:293–301CrossRefGoogle Scholar
  36. Kooyman GL, Cherel Y, Lemaho Y, Croxall JP, Thorson PH, Ridoux V (1992) Diving behavior and energetics during foraging cycles in king penguins. Ecol Monogr 62:143–163CrossRefGoogle Scholar
  37. Koubbi P, Duhamel G, Herbert C (2001) Seasonal relative abundance of fish larvae inshore at îles Kerguelen, Southern Ocean. Ant Sci 13:385–392CrossRefGoogle Scholar
  38. Lack DL (1954) The natural regulation of animal numbers. Clarendon Press, OxfordGoogle Scholar
  39. Le Vaillant M, Wilson RP, Kato A, Saraux C, Hanuise H, Prud’Homme O, Le Maho Y, Le Bohec C, Ropert-Coudert Y (2012) King penguins adjust their diving behaviour with age. J Exp Biol 215:3685–3692CrossRefGoogle Scholar
  40. Lecomte VJ, Sorci G, Cornet S, Jaeger A, Faivre B, Arnoux E, Gaillard M, Trouvé C, Besson D, Chastel O, Weimerskirch H (2010) Patterns of aging in the long-lived wandering albatross. PNAS 107:6370–6375CrossRefGoogle Scholar
  41. Lewis S, Schreiber EA, Daunt F, Schenk GA, Orr K, Adams A, Wanless S, Hamer KC (2005) Sex-specific foraging behavior in tropical boobies: does size matter? Ibis 150:408–414CrossRefGoogle Scholar
  42. Marchetti K, Price T (1989) Differences in the foraging of juvenile and adult birds: the importance of developmental constraints. Biol Rev 64:51–70CrossRefGoogle Scholar
  43. Nisbet ICT, Dann P (2009) Reproductive performance of little penguins Eudyptula minor in relation to year, age, pair-bond duration, breeding date and individual quality. J Avian Biol 40:296–308CrossRefGoogle Scholar
  44. Pärt T (1995) Does breeding experience explain increased reproductive success with age? Proc R Soc B 360:113–117CrossRefGoogle Scholar
  45. Pärt T (2001) The effects of territory quality on age-dependent reproductive performance in the northern wheatear, Oenanthe oenanthe. Anim Behav 62:379–388CrossRefGoogle Scholar
  46. Pinet P, Jaquemet S, Phillips RA, Le Corre M (2012) Sex-specific foraging strategies throughout the breeding season in a tropical, sexually monorphic small petrel. Anim Behav 83:979–989CrossRefGoogle Scholar
  47. Pinheiro J, Bates D, DebRoy S, Sarkar D, Team TRDC (2010) nlme: linear and nonlinear mixed effect models. R package version 3.1-102Google Scholar
  48. Pütz K, Cherel Y (2005) The diving behaviour of brooding king penguins (Aptenodytes patagonicus) from the Falkland Islands: variation in dive profiles and synchronous underwater swimming provide new insights into their foraging strategies. Mar Biol 147:281–290CrossRefGoogle Scholar
  49. R Development Core Team (2008) R: a language and environment for statistical computing [Internet]. Vienna (Austria): R Foundation for Statistical Computing. Available from: http://www.R-project.org
  50. Ridoux V (1994) The diets and dietary segregation of seabirds at the subantarctic Crozet Islands. Mar Ornithol 22:1–192Google Scholar
  51. Rütz C, Whittingham MJ, Newton I (2006) Age-dependent diet choice in an avian top predator. Proc R Soc B 273:579–586CrossRefGoogle Scholar
  52. Saraux C, Chiaradia A, Le Maho Y, Ropert-Coudert Y (2011) Everybody needs somebody: unequal parental effort in little penguins. Behav Ecol 22:837–845CrossRefGoogle Scholar
  53. Schreer JF, Kovacs KM (1997) Allometry of diving capacity in air-breathing vertebrates. Can J Zool 75:339–358CrossRefGoogle Scholar
  54. Schulte-Hostedde AI, Zinner B, Millar JS, Hickling GJ (2005) Restitution of mass-size residuals: validating body condition indices. Ecology 86:155–163CrossRefGoogle Scholar
  55. Weimerskirch H, Stahl JC, Jouventin P (1992) The breeding biology and population-dynamics of king penguins Aptenodytes patagonica on the Crozet-Islands. Ibis 134:107–117CrossRefGoogle Scholar
  56. Weimerskirch H, Cherel Y, Cuenot-Chaillet F, Ridoux V (1997) Alternative foraging strategies and resource allocation by male and female wandering albatross. Ecology 78:2051–2063CrossRefGoogle Scholar
  57. Welcker J, Steen H, Harding AMA, Gabrielsen GW (2009) Sex-specific provisioning behaviour in a monorphic seabirb with a biomodal foraging strategy. Ibis 151:502–513CrossRefGoogle Scholar
  58. Wilson RP (1995) A device for measuring seabird activity at sea. J Avian Biol 26:172–175CrossRefGoogle Scholar
  59. Wilson RP, Wilson MPT (1989) Tape—a package-attachment technique for penguins. Wildl Soc Bull 17:77–79Google Scholar
  60. Wilson RP, Cooper J, Plötz J (1992) Can we determine when marine endotherms feed? A case study seabirds. J Exp Biol 167:267–275Google Scholar
  61. Zimmer I, Ropert-Coudert Y, Kato A, Ancel A, Chiaradia A (2011) Does foraging performances change with age in female little penguins (Eudyptula minor). PLoSOne 6:e16098Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Maryline Le Vaillant
    • 1
    • 2
  • Céline Le Bohec
    • 1
    • 2
    • 3
    • 4
    • 5
  • Onésime Prud’Homme
    • 1
    • 2
  • Barbara Wienecke
    • 6
  • Yvon Le Maho
    • 1
    • 2
  • Akiko Kato
    • 1
    • 2
  • Yan Ropert-Coudert
    • 1
    • 2
  1. 1.Institut Pluridisciplinaire Hubert CurienUniversité de StrasbourgStrasbourgFrance
  2. 2.CNRS, UMR7178StrasbourgFrance
  3. 3.Centre Scientifique de MonacoMonacoPrincipality of Monaco
  4. 4.LEA 647 ‘BioSensib’ CSM-CNRSMonacoPrincipality of Monaco
  5. 5.Nordic Centre for Research on Marine Ecosystems and Resources under Climate Change (NorMER), Centre for Ecological and Evolutionary Synthesis, Department of BiologyUniversity of OsloOsloNorway
  6. 6.Australian Antarctic DivisionKingstonAustralia

Personalised recommendations