Marine Biology

, Volume 160, Issue 5, pp 1127–1134

Effects of feeding and light intensity on the response of the coral Porites rus to ocean acidification

  • Steeve Comeau
  • Robert C. Carpenter
  • Peter J. Edmunds
Original Paper

Abstract

Recently, it has been suggested that there are conditions under which some coral species appear to be resistant to the effects of ocean acidification. To test if such resistance can be explained by environmental factors such as light and food availability, the present study investigated the effect of 3 feeding regimes crossed with 2 light levels on the response of the coral Porites rus to 2 levels of pCO2 at 28 °C. After 1, 2, and 3 weeks of incubation under experimental conditions, none of the factors—including pCO2—significantly affected area-normalized calcification and biomass-normalized calcification. Biomass also was unaffected during the first 2 weeks, but after 3 weeks, corals that were fed had more biomass per unit area than starved corals. These results suggest that P. rus is resistant to short-term exposure to high pCO2, regardless of food availability and light intensity. P. rus might therefore represent a model system for exploring the genetic basis of tolerance to OA.

Supplementary material

227_2012_2165_MOESM1_ESM.pdf (494 kb)
Supplementary material 1 (PDF 495 kb)

References

  1. Adam TC, Schmitt RJ, Holbrook SJ, Brooks AJ, Edmunds PJ, Carpenter RC, Bernardi G (2011) Herbivory, connectivity, and ecosystem resilience: response of a coral reef to a large-scale perturbation. PLoS ONE 6:e23717. doi:10.1371/journal.pone.0023717 CrossRefGoogle Scholar
  2. Adjeroud M (1997) Factors influencing spatial patterns on coral reefs around Moorea, French Polynesia. Mar Ecol Prog Ser 159:105–119. doi:10.3354/meps159105 CrossRefGoogle Scholar
  3. Alldredge A, Carlson C of Moorea Coral Reef LTER (2011) MCR LTER: Coral reef: Water column: Nearshore water profiles, CTD, primary production, and chemistry. knb-lter-mcr.10.29 (http://metacat.lternet.edu/knb/metacat/knb-lter-mcr.10.29/lter)
  4. Anthony KRN (1999) Coral suspension feeding on fine particulate matter. J Exp Mar Biol Ecol 232:85–106. doi:10.1016/S0022-0981(98)00099-9 CrossRefGoogle Scholar
  5. Anthony KRN (2000) Enhanced particle-feeding capacity of corals on turbid reefs (Great Barrier Reef, Australia). Coral Reefs 19:59–67. doi:10.1007/s003380050227 CrossRefGoogle Scholar
  6. Anthony KRN, Fabricius KE (2000) Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. J Exp Mar Biol Ecol 252:221–253. doi:10.1016/S0022-0981(00)00237-9 CrossRefGoogle Scholar
  7. Anthony KRN, Connolly SR, Willis BL (2002) Comparative analysis of energy allocation to tissue and skeletal growth in corals. Limnol Oceanogr 47:1417–1429. doi:10.4319/lo.2002.47.5.1417 CrossRefGoogle Scholar
  8. Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci 105:17442–17446. doi:10.1073/pnas.0804478105 CrossRefGoogle Scholar
  9. Atkinson MJ, Cuet P (2008) Contribution to the theme section “Effects of ocean acidification on marine ecosystems” possible effects of ocean acidification on coral reef biogeochemistry: topics for research. Mar Ecol Prog Ser 373:249–256. doi:10.3354/meps07867 CrossRefGoogle Scholar
  10. Atkinson MJ, Carlson B, Crow GL (1995) Coral growth in high-nutrient, low-pH seawater: a case study of corals cultured at the Waikiki Aquarium, Honolulu, Hawaii. Coral Reefs 14:215–223. doi:10.1007/BF00334344 Google Scholar
  11. Caldeira K, Wickett ME (2003) Oceanography: anthropogenic carbon and ocean pH. Nature 425:365. doi:10.1038/425365a CrossRefGoogle Scholar
  12. Comeau S, Edmunds PJ, Spindel NB, Carpenter RC (2013a) The responses of eight coral reef calcifiers to increasing partial pressure of CO2 do not exhibit a tipping point. Limnol Oceanogr (in press)Google Scholar
  13. Comeau S, Carpenter RC, Edmunds PJ (2013b) Coral reef calcifiers buffer their response to ocean acidification using both bicarbonate and carbonate. Proc Roy Soc B 280. doi:10.1098/rspb.2012.2374
  14. Crawley A, Kline DI, Dunn S, Anthony K, Dove S (2010) The effect of ocean acidification on symbiont photorespiration and productivity in Acropora formosa. Glob Change Biol 16:851–863. doi:10.1111/j.1365-2486.2009.01943.x CrossRefGoogle Scholar
  15. Davies PS (1989) Short-term growth measurements of corals using an accurate buoyant weighing technique. Mar Biol 101:389–395CrossRefGoogle Scholar
  16. Dickson AG, Sabine CL, Christian JR (eds) (2007) Guide to best prac- tices for ocean CO2 measurements. PICES Special Publication 3Google Scholar
  17. Edmunds PJ (2011) Zooplanktivory ameliorates the effects of ocean acidification on the reef coral Porites spp. Limnol Oceanogr 56:2402–2410CrossRefGoogle Scholar
  18. Edmunds P (2012) Effect of pCO2 on the growth, respiration, and photophysiology of massive Porites spp. in Moorea, French Polynesia. Mar Biol:1–12. doi:10.1007/s00227-012-2001-y
  19. Edmunds PJ, Brown D, Moriarty V (2012) Interactive effects of ocean acidification and temperature on two scleractinian corals from Moorea, French Polynesia. Glob Change Biol 18:2173–2183. doi:10.1111/j.1365-2486.2012.02695.x CrossRefGoogle Scholar
  20. Gattuso J-P, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am Zool 39:160–183. doi:10.1093/icb/39.1.160 Google Scholar
  21. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD et al (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742. doi:10.1126/science.1152509 CrossRefGoogle Scholar
  22. Holcomb M, McCorkle DC, Cohen AL (2010) Long-term effects of nutrient and CO2 enrichment on the temperate coral Astrangia poculata (Ellis and Solander, 1786). J Exp Mar Biol Ecol 386:27–33. doi:10.1016/j.jembe.2010.02.007 CrossRefGoogle Scholar
  23. Houlbrèque F, Ferrier-Pagès C (2009) Heterotrophy in tropical scleractinian corals. Biol Rev 84:1–17. doi:10.1111/j.1469-185X.2008.00058.x CrossRefGoogle Scholar
  24. Houlbreque F, Tambutte E, Richard C, Ferrier-Pages C (2004) Importance of a micro-diet for scleractinian corals. Mar Ecol Prog Ser 282:151–160CrossRefGoogle Scholar
  25. Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R et al (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933. doi:10.1126/science.1085046 CrossRefGoogle Scholar
  26. Kleypas J, Yates K (2009) Coral reefs and ocean acidification. Oceanography 22:108–117. doi:10.5670/oceanog.2009.101 CrossRefGoogle Scholar
  27. Langdon C, Atkinson MJ (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J Geophys Res 110:C09S07. doi:10.1029/2004JC002576 CrossRefGoogle Scholar
  28. Lavigne H, Gattuso J-P (2011) seacarb: seawater carbonate chemistry with R. R package version 2.4.1. http://CRAN.Rproject.org/package=seacarb
  29. Marsh JA (1970) Primary productivity of reef-building calcareous red algae. Ecology 51:255–263. doi:10.2307/1933661 CrossRefGoogle Scholar
  30. Marubini F, Barnett H, Langdon C, Atkinson MJ (2001) Dependence of calcification on light and carbonate ion concentration for the hermatypic coral Porites compressa. Mar Ecol Prog Ser 220:153–162CrossRefGoogle Scholar
  31. McCulloch M, Falter J, Trotter J, Montagna P (2012) Coral resilience to ocean acidification and global warming through pH up-regulation. Nat Clim Change 2:623–627CrossRefGoogle Scholar
  32. Mills MM, Lipschultz F, Sebens KP (2004) Particulate matter ingestion and associated nitrogen uptake by four species of scleractinian corals. Coral Reefs 23:311–323. doi:10.1007/s00338-004-0380-3 CrossRefGoogle Scholar
  33. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi:10.1038/nature08823 CrossRefGoogle Scholar
  34. Muscatine L (1990) The role of symbiotic algae in carbon and energy flux in reef corals. In: Dubinsky Z (ed) Ecosystems of the world. Elsevier, Amsterdam, pp 75–87Google Scholar
  35. Orr JC (2011) Recent and future changes in ocean carbonate chemistry. In: Gattuso J-P, Hansson L (eds) Ocean acidification. Oxford University Press, Oxford, pp 41–66Google Scholar
  36. Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333:418–422. doi:10.1126/science.1204794 CrossRefGoogle Scholar
  37. Quinn GP, Keough MJ (eds) (2002) Experimental design and data analysis for biologists. Cambridge University Press, MelbourneGoogle Scholar
  38. Renegar DA, Riegl BM (2005) Effect of nutrient enrichment and elevated CO2 partial pressure on growth rate of Atlantic scleractinian coral Acropora cervicornis. Mar Ecol Prog Ser 293:69–76. doi:10.3354/meps293069 CrossRefGoogle Scholar
  39. Reynaud S, Leclercq N, Romaine-Lioud S, Ferrier-Pagés C, Jaubert J, Gattuso J-P (2003) Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Glob Change Biol 9:1660–1668CrossRefGoogle Scholar
  40. Ries JB (2011) A physicochemical framework for interpreting the biological calcification response to CO2-induced ocean acidification. Geochim Cosmochim Acta 75:4053–4064. doi:10.1016/j.gca.2011.04.025 CrossRefGoogle Scholar
  41. Schneider K, Erez J (2006) The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral Acropora eurystoma. Limnol Oceanogr 51:1284–1293CrossRefGoogle Scholar
  42. Stambler N (2011) Zooxanthellae: the yellow symbionts inside animals. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Netherland, pp 87–106CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Steeve Comeau
    • 1
  • Robert C. Carpenter
    • 1
  • Peter J. Edmunds
    • 1
  1. 1.Department of BiologyCalifornia State UniversityNorthridgeUSA

Personalised recommendations