Marine Biology

, Volume 160, Issue 5, pp 1065–1081 | Cite as

Strong population differentiation of softshell clams (Mya arenaria) sampled across seven biogeographic marine ecoregions: possible selection and isolation by distance

  • Philippe St-Onge
  • Jean-Marie Sévigny
  • Carly Strasser
  • Réjean Tremblay
Original Paper


Twenty-two Mya arenaria samples spanning seven marine ecoregions mostly situated in the Cold Temperate Northwest Atlantic (CTNA) biogeographic province were collected between 2001 and 2010 and genotyped at seven highly polymorphic microsatellite loci to test for population differentiation. Results showed strong regional differentiation with six genetic clusters: (1) Northern Gulf of St. Lawrence (GSL), (2) Magdalen Archipelago, (3) Southern GSL, (4) Lower Atlantic Canada, (5) US Coasts and (6) Northern Europe. Population structure was supported no matter the statistical approach and generally does not reflect the geographical limits of marine ecoregions. A latitudinal cline in allelic richness provides evidence for a northward post-glacial expansion range for this species. While geographical distance explains the genetic variation detected in southern CTNA, increased heterogeneity observed in northern CTNA can be explained by isolation by distance, marine landscaping and presumable selective processes acting at the Mar5 locus. Exclusion of Mar5 from analyses resulted in the detection of three genetic clusters instead of six.


Gene Flow Allelic Richness Genetic Cluster Spatial Genetic Structure Lawrence Estuary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors wish to thank the following people for their much appreciated help in the field and in the laboratory: Éric Parent, Éric Tremblay, Léophane Leblanc, Firmin Leblanc, Gilles Miron, Julie Quimper, Alexandra Valentin, Philippe Galipeau, Chantale Daigle, Carole Degrâce, Andre Siah, Sylvie Brulotte, Patrice Pelletier, the Kouchibouguac, Kejimkujik and Cape Breton Highlands National Parks and the Atlantic Veterinary College. Authors would also like to thank all anonymous reviewers who commented on earlier drafts of the manuscript. This study was funded by the Aquaculture Collaborative Research and Development Program (ACRDP), the National Sciences and Engineering Research Council of Canada (NSERC) and the Réseau Aquaculture du Québec (RAQ) grants to P. St-Onge, J.M. Sévigny and R. Tremblay.

Supplementary material

227_2012_2157_MOESM1_ESM.docx (36 kb)
Supplementary material 1 (DOCX 36 kb)
227_2012_2157_MOESM2_ESM.docx (24 kb)
Supplementary material 2 (DOCX 24 kb)
227_2012_2157_MOESM3_ESM.docx (20 kb)
Supplementary material 3 (DOCX 19 kb)
227_2012_2157_MOESM4_ESM.docx (30 kb)
Supplementary material 4 (DOCX 30 kb)
227_2012_2157_MOESM5_ESM.docx (23 kb)
Supplementary material 5 (DOCX 23 kb)
227_2012_2157_MOESM6_ESM.docx (14 kb)
Supplementary material 6 (DOCX 14 kb)
227_2012_2157_MOESM7_ESM.docx (19 kb)
Supplementary material 7 (DOCX 18 kb)
227_2012_2157_MOESM8_ESM.docx (25 kb)
Supplementary material 8 (DOCX 25 kb)
227_2012_2157_MOESM9_ESM.docx (138 kb)
Online Resource 9 Assessment of the most probable number of clusters (K) explaining the genetic structure of M. arenaria individuals (N = 604) from 22 samples genotyped with seven microsatellite loci as detected with the ΔK graphical method developed by Evanno et al. (2005). a) Mean (±SD; N = 4) posterior probability of data; b) mean rate (±SD; N = 4) of change of the likelihood distribution; c) mean (±SD; N = 4) absolute values of the second-order rate of change of the likelihood distribution; d) ΔK. Arrows point to the greatest value of ΔK and the most probable number of clusters (K = 6) explaining the genetic structure in the dataset (DOCX 138 kb)
227_2012_2157_MOESM10_ESM.docx (187 kb)
Online Resource 10 Assessment of the most probable number of clusters (K) explaining the genetic structure of M. arenaria individuals (N = 604) from 22 samples genotyped with six microsatellite loci (all but Mar5) as detected with the ΔK graphical method developed by Evanno et al. (2005). a) Mean (±SD; N = 4) posterior probability of data; b) mean rate (±SD; N = 4) of change of the likelihood distribution; c) mean (±SD; N = 4) absolute values of the second-order rate of change of the likelihood distribution; d) ΔK. Arrows point to the greatest value of ΔK and the most probable number of clusters (K = 3) explaining the genetic structure in the dataset (DOCX 186 kb)
227_2012_2157_MOESM11_ESM.docx (22 kb)
Supplementary material 11 (DOCX 21 kb)


  1. Archambault P, Snelgrove PVR, Fisher JAD et al (2010) From sea to sea: Canada’s three oceans of biodiversity. PLoS ONE 5:e12182CrossRefGoogle Scholar
  2. Baker P, Austin JD, Bowen BW, Baker SM (2008) Range-wide population structure and history of the northern quahog (Mercenaria mercenaria) inferred from mitochondrial DNA sequence data. ICES J Mar Sci 65:155–163CrossRefGoogle Scholar
  3. Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc B Biol Sci 263:1619–1626CrossRefGoogle Scholar
  4. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (1996) GENETIX 4.05, logiciel sous Windows™ pour la génétique des populations. Université de Montpellier II, MontpellierGoogle Scholar
  5. Bernatchez P, Dubois JMM, Dionne JC (1999) Holocene shell beds of Baie-Comeau along the North shore of the St. Lawrence estuary (Quebec). Can J Earth Sci 36:519–531CrossRefGoogle Scholar
  6. British Oceanographic Data Centre (2003) Centenary edition of the GEBCO Digital Atlas. Published on behalf of the International Hydrographic Organization (IHO) and the International Oceanographic Commission (IOC) of UNESCO, Liverpool, UKGoogle Scholar
  7. Camilli L, Castelli A, Lardicci C, Maltagliati F (2001) Evidence for high levels of genetic divergence between populations of the bivalve Mytilaster minimus from a brackish environment and two adjacent marine sites. J Molluscan Stud 67:506–510CrossRefGoogle Scholar
  8. Caporale DA, Beal BF, Roxby R, VanBeneden RJ (1997) Population structure of Mya arenaria along the New England coastline. Mol Mar Biol Biotech 6:33–39Google Scholar
  9. Cassista MC, Hart MW (2007) Spatial and temporal genetic homogeneity in the Arctic surfclam (Mactromeris polynyma). Mar Biol 152:569–579CrossRefGoogle Scholar
  10. Chabot D, Rondeau A, Sainte-Marie B, Savard L, Surette T, Archambault P (2007) Distribution of benthic invertebrates in the Estuary and Gulf of St. Lawrence. Can Sci Advis Secr 2007/018Google Scholar
  11. Chatterji S, Pachter L (2006) Reference based annotation with GeneMapper. Genome Biol 7:R29CrossRefGoogle Scholar
  12. Cockerham CC, Weir BS (1993) Estimation of gene flow from F-statistics. Evolution 47:855–863CrossRefGoogle Scholar
  13. Congleton WR, Pearce BR, Parker MR, Causey RC (2003) Mariculture siting—tidal currents and growth of Myaarenaria. J Shellfish Res 22:75–83Google Scholar
  14. Crawford NG (2010) SMOGD: software for the measurement of genetic diversity. Mol Ecol Resour 10:556–557CrossRefGoogle Scholar
  15. Dahlgren TG, Weinberg JR, Halanych KM (2000) Phylogeography of the ocean quahog (Arctica islandica): influences of paleoclimate on genetic diversity and species range. Mar Biol 137:487–495CrossRefGoogle Scholar
  16. Dai A, Trenberth KE (2002) Estimates of freshwater discharge from continents: latitudinal and seasonal variations. J Hydrometeorol 3:660–687CrossRefGoogle Scholar
  17. Department of Fisheries and Oceans Canada (2009) Development of a framework and principles for the biogeographic classification of Canadian Marine Areas. Can Sci Advis Secr 2009/056Google Scholar
  18. Domingues CP, Creer S, Taylor MI, Queiroga H, Carvalho GR (2010) Genetic structure of Carcinus maenas within its native range: larval dispersal and oceanographic variability. Mar Ecol Prog Ser 410:111–123CrossRefGoogle Scholar
  19. Drouin C-A, Bourget E, Tremblay R (2002) Larval transport processes of barnacle larvae in the vicinity of the interface between two genetically different populations of Semibalanus balanoides. Mar Ecol Prog Ser 229:165–172CrossRefGoogle Scholar
  20. Dupont L, Ellien C, Viard F (2007) Limits to gene flow in the slipper limpet Crepidula forniacata as revealed by microsatellite data and a larval dispersal model. Mar Ecol Prog Ser 349:125–138CrossRefGoogle Scholar
  21. Dyke AS, Prest VK (1987) Late Wisconsinan and Holocene history of the Laurentide Ice Sheet. Géogr Phys Quat 41:237–263Google Scholar
  22. Elderkin CL, Klerks PL (2001) Shifts in allele and genotype frequencies in zebra mussels, Dreissena polymorpha, along the latitudinal gradient formed by the Mississippi River. J N Am Benthol Soc 20:595–605CrossRefGoogle Scholar
  23. Engle VD, Summers JK (1999) Latitudinal gradients in benthic community composition in Western Atlantic estuaries. J Biogeogr 26:1007–1023CrossRefGoogle Scholar
  24. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefGoogle Scholar
  25. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587Google Scholar
  26. Fogarty MJ, Botsford LW (2007) Population connectivity and spatial management of marine fisheries. Oceanography 20:112–123CrossRefGoogle Scholar
  27. Gan J, Ingram RG, Greatbatch RJ, van der Baaren T (2004) Variability of circulation induced by the separation of Gaspe Current in Baie des Chaleurs (Canada): observational studies. Estuar Coast Shelf Sci 61:393–402CrossRefGoogle Scholar
  28. Glaubitz JC (2004) CONVERT: a user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol Ecol Notes 4:309–310CrossRefGoogle Scholar
  29. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices Version 2.9.3.
  30. Goudet J, Raymond M, de-Meeus T, Rousset F (1996) Testing differentiation in diploid populations. Genetics 144:1933–1940Google Scholar
  31. Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638Google Scholar
  32. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332CrossRefGoogle Scholar
  33. Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6:13–18CrossRefGoogle Scholar
  34. Jost L (2008) G(ST) and its relatives do not measure differentiation. Mol Ecol 17:4015–4026CrossRefGoogle Scholar
  35. Kenchington EL, Patwary MU, Zouros E, Bird CJ (2006) Genetic differentiation in relation to marine landscape in a broadcast-spawning bivalve mollusc (Placopecten magellanicus). Mol Ecol 15:1781–1796CrossRefGoogle Scholar
  36. Kenchington EL, Harding GC, Jones MW, Prodöhl PA (2009) Pleistocene glaciation events shape genetic structure across the range of the American lobster, Homarus americanus. Mol Ecol 18:1654–1667CrossRefGoogle Scholar
  37. Kimura M, Crow JF (1964) The number of alleles that can be maintained in a finite population. Genetics 49:725–738Google Scholar
  38. Kimura M, Weiss GH (1964) Stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics 49:561–576Google Scholar
  39. Krakau M, Jacobsen S, Jensen KT, Reise K (2012) The cockle Cerastoderma edule at Northeast Atlantic shores: genetic signatures of glacial refugia. Mar Biol 159:221–230CrossRefGoogle Scholar
  40. Lachance AA, Myrand B, Tremblay R, Koutitonsky V, Carrington E (2008) Biotic and abiotic factors influencing attachment strength of blue mussels Mytilus edulis in suspended culture. Aquatic Biol 2:119–129CrossRefGoogle Scholar
  41. Larsson LC, Laikre L, Palm S, Andre C, Carvalho GR, Ryman N (2007) Concordance of allozyme and microsatellite differentiation in a marine fish, but evidence of selection at a microsatellite locus. Mol Ecol 16:1135–1147Google Scholar
  42. Lasota R, Hummel H, Wolowicz M (2004) Genetic diversity of European populations of the invasive soft-shell clam Mya arenaria (Bivalvia). J Mar Biol Assoc UK 84:1051–1056CrossRefGoogle Scholar
  43. Lutz RA, Jablonski D (1978) Larval bivalve shell morphometry: a new paleoclimatic tool? Science 202:51–53CrossRefGoogle Scholar
  44. MacNeil FS (1965) Evolution and distribution of the genus Mya, and Tertiary migrations of Mollusca. Geol Surv Prof Pap 483-GGoogle Scholar
  45. Maggs CA, Castilho R, Foltz D et al (2008) Evaluating signatures of glacial refugia for North Atlantic benthic marine taxa. Ecology 89:S108–S122CrossRefGoogle Scholar
  46. Manni F, Guerard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s algorithm. Hum Biol 76:173–190CrossRefGoogle Scholar
  47. Matschiner M, Salzburger W (2009) TANDEM: integrating automated allele binning into genetics and genomics workflows. Bioinformatics 25:1982–1983CrossRefGoogle Scholar
  48. Maximovich NV, Guerassimova AV (2003) Life history characteristics of the clam Mya arenaria in the White Sea. Helgoland Mar Res 57:91–99CrossRefGoogle Scholar
  49. Michinina SR, Rebordinos L (1997) Genetic differentiation in marine and estuarine natural populations of Crassostrea angulata. Mar Ecol Prog Ser 154:167–174CrossRefGoogle Scholar
  50. Mileikovsky SA (1971) Types of larval development in marine bottom invertebrates, their distribution and ecological significance: a re-evaluation. Mar Biol 10:193–213CrossRefGoogle Scholar
  51. Molecular Ecology Resources Primer Development Consortium (2011) Permanent genetic resources added to molecular ecology resources database 1(June), pp. 2011–31, July 2011. Mol Ecol Resour 11:1124–1126CrossRefGoogle Scholar
  52. Monmonier M (1973) Maximum-difference barriers: an alternative numerical regionalization method. Geogr Anal 3:245–261Google Scholar
  53. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590Google Scholar
  54. Panova M, Blakeslee AMH, Miller AW, Mäkinen T, Ruiz GM, Johannesson K, André C (2011) Glacial history of the North Atlantic marine snail, Littorina saxatilis, inferred from distribution of mitochondrial DNA lineages. PLoS ONE 6:e17511Google Scholar
  55. Paul A, Schäfer-Neth C (2003) Modelling the water masses of the Atlantic Ocean at the last glacial maximum. Paleoceanography 18:1058–1084CrossRefGoogle Scholar
  56. Pietrafesa LJ, Morrison JM, McCann MP, Churchill J, Bohm E, Houghton RW (1994) Water mass linkages between the Middle and South Atlantic bights. Deep Sea Res II 41:365–389CrossRefGoogle Scholar
  57. Pineira J, Quesada H, Rolan-Alvarez E, Caballero A (2008) Genetic discontinuity associated with an environmentally induced barrier to gene exchange in the marine snail Littorina saxatilis. Mar Ecol Prog Ser 357:175–184CrossRefGoogle Scholar
  58. Ponurovskii SK, Kolotukhina NK (2000) Larval settlement of the bivalves Mya arenaria and M. uzenensis from scallop collectors in Vostok Bay, Sea of Japan. Russian J Mar Biol 26:330–337CrossRefGoogle Scholar
  59. Powers SP, Bishop MA, Grabowski JH, Peterson CH (2006) Distribution of the invasive bivalve Mya arenaria L. on intertidal flats of southcentral Alaska. J Sea Res 55:207–216CrossRefGoogle Scholar
  60. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959Google Scholar
  61. Raymond M, Rousset F (1995) GENEPOP (version1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  62. Redjah I, Olivier F, Tremblay R, Myrand B, Pernet F, Neumeier U, Chevarie L (2010) The importance of turbulent kinetic energy on transport of juvenile clams (Mya arenaria). Aquaculture. 307:20–28CrossRefGoogle Scholar
  63. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228Google Scholar
  64. Rousset F (2008) GENEPOP’ 007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106CrossRefGoogle Scholar
  65. Santos S, Cruzeiro C, Olsen JL, van der Veer HW, Luttikhuizen PC (2012) Isolation by distance and low connectivity in the peppery furrow shell Scrobicularia plana (Bivalvia). Mar Ecol Prog Ser 462:111–124CrossRefGoogle Scholar
  66. Savenkoff C, Vézina AF, Smith PC, Han G (2001) Summer transports of nutrients in the Gulf of St. Lawrence estimated by inverse modelling. Estuar Coast Shelf Sci 52:565–587CrossRefGoogle Scholar
  67. Schmidt PS, Rand DM (2001) Adaptive maintenance of genetic polymorphism in an intertidal barnacle: habitat- and life-stage-specific survivorship of Mpi genotypes. Evolution 55:1336–1344Google Scholar
  68. Schmidt PS, Bertness MD, Rand DM (2000) Environmental heterogeneity and balancing selection in the acorn barnacle Semibalanus balanoides. Proc R Soc B Biol Sci 267:379–384CrossRefGoogle Scholar
  69. Schmidt PS, Serrão EA, Pearson GA et al (2008) Ecological genetics in the North Atlantic: environmental gradients and adaptation at specific loci. Ecology 89:S91–S107CrossRefGoogle Scholar
  70. Schunter C, Carreras-Carbonell J, Macpherson E et al (2011) Matching genetics with oceanography: directional gene flow in a Mediterranean fish species. Mol Ecol 20:5167–5181CrossRefGoogle Scholar
  71. Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629CrossRefGoogle Scholar
  72. Sevigny JM, Valentin A, Talbot A, Menard N (2009) Connectivité entre les populations du fjord du Saguenay et celles du Golfe du Saint-Laurent. Rev Sci Eau 22:315–339Google Scholar
  73. Shanks AL (2009) Pelagic larval duration and dispersal distance revisited. Biol Bull 216:373–385Google Scholar
  74. Shearman RK, Lentz SJ (2010) Long-term sea surface temperature variability along the US East Coast. J Phys Oceanogr 40:1004–1017CrossRefGoogle Scholar
  75. Sheng J (2001) Dynamics of a buoyancy-driven coastal jet: the Gaspé Current. J Phys Oceanogr 31:3146–3162CrossRefGoogle Scholar
  76. Shiah F-K, Ducklow HW (1994) Temperature regulation of heterotrophic bacterioplankton abundance, production, and specific growth rate in Chesapeake Bay. Limnol Oceanogr 39:1243–1258CrossRefGoogle Scholar
  77. Shore JA, Hannah CG, Loder JW (2000) Drift pathways on the western Scotian Shelf and its environs. Can J Fish Aquatic Sci 57:2488–2505CrossRefGoogle Scholar
  78. Skold M, Wing SR, Mladenov PV (2003) Genetic subdivision of a sea star with high dispersal capability in relation to physical barriers in a fjordic seascape. Mar Ecol Prog Ser 250:163–174CrossRefGoogle Scholar
  79. Slatkin M (1985) Rare alleles as indicators of gene flow. Evolution 39:53–65CrossRefGoogle Scholar
  80. Sokal RR, Rohlf FJ (1981) Biometry, 2nd edn. W.H Freeman and Company, New York, NYGoogle Scholar
  81. Spalding MD, Fox HE, Halpern BS et al (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57:573–583CrossRefGoogle Scholar
  82. St-Onge P, Miron G (2007) Effects of current speed, shell length and type of sediment on the erosion and transport of juvenile softshell clams (Mya arenaria). J Exp Mar Biol Ecol 349:12–26CrossRefGoogle Scholar
  83. St-Onge P, Parent E, Sevigny JM, Tremblay R, Rioux-Pare R (2011) Isolation and characterization of eight novel microsatellite markers for the softshell clam (Mya arenaria). Mol Ecol Resour Primer Database mer-11-0122Google Scholar
  84. Strasser CA, Barber PH (2009) Limited genetic variation and structure in softshell clams (Mya arenaria) across their native and introduced range. Conserv Genet 10:803–814CrossRefGoogle Scholar
  85. Suneetha KB, Naevdal G (2001) Genetic and morphological stock structure of the pearlside, Maurolicus muelleri (Pisces, Sternoptychidae), among Norwegian fjords and offshore area. Sarsia 86:191–201Google Scholar
  86. Thorson G (1950) Reproductive and larval ecology of marine bottom invertebrates. Biol Rev 25:1–45CrossRefGoogle Scholar
  87. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  88. Vézina AF, Gratton Y, Vinet P (1995) Mesoscale physical—biological variability during a summer phytoplankton bloom in the lower St. Lawrence Estuary. Estuar Coast Shelf Sci 41:393–411CrossRefGoogle Scholar
  89. Vuilleumier S, Goudet J, Perrin N (2010) Evolution in heterogeneous populations: from migration models to fixation probabilities. Theor Popul Biol 78:250–258CrossRefGoogle Scholar
  90. Waples RS (1989) Temporal variation in allele frequencies—testing the right hypothesis. Evolution 43:1236–1251CrossRefGoogle Scholar
  91. Wares JP (2002) Community genetics in the Northwestern Atlantic intertidal. Mol Ecol 11:1131–1144CrossRefGoogle Scholar
  92. Wares JP, Cunningham CW (2001) Phylogeography and historical ecology of the North American intertidal. Evolution 55:2455–2469Google Scholar
  93. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  94. Westgaard JI, Fevolden SE (2007) Atlantic cod (Gadus morhua L.) in inner and outer coastal zones of northern Norway display divergent genetic signature at non-neutral loci. Fish Res 85:306–315Google Scholar
  95. Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159Google Scholar
  96. Wright S (1943) Isolation by distance. Genetics 28:114–138Google Scholar
  97. Yasuda N, Nagai S, Hamaguchi M, Okaji K, Gerard K, Nadaoka K (2009) Gene flow of Acanthaster planci (L.) in relation to ocean currents revealed by microsatellite analysis. Mol Ecol 18:1574–1590CrossRefGoogle Scholar
  98. Young AMC, Torres C, Mack JE, Cunningham CW (2002) Morphological and genetic evidence for vicariance and refugium in Atlantic and Gulf of Mexico populations of the hermit crab Pagurus longicarpus. Mar Biol 140:1059–1066CrossRefGoogle Scholar
  99. Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, Upper Saddle, NJGoogle Scholar
  100. Zuccarello GC, West JA (2003) Multiple cryptic species: molecular diversity and reproductive isolation in the Bostrychia radicans/B. moritziana complex (Rhodomelaceae, Rhodophyta) with focus on North American isolates. J Phycol 39:948–959CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Philippe St-Onge
    • 1
  • Jean-Marie Sévigny
    • 2
  • Carly Strasser
    • 3
  • Réjean Tremblay
    • 1
  1. 1.Institut des Sciences de la MerUniversité du Québec à RimouskiRimouskiCanada
  2. 2.Institut Maurice-LamontagnePêches et Océans CanadaMont-JoliCanada
  3. 3.UC Curation CenterUniversity of California Office of the PresidentOaklandUSA

Personalised recommendations