Marine Biology

, Volume 160, Issue 4, pp 751–761 | Cite as

Feeding grounds for waders in the Bay of the Mont Saint-Michel (France): the Lanice conchilega reef serves as an oasis in the tidal flats

  • Bart De SmetEmail author
  • Laurent Godet
  • Jérôme Fournier
  • Nicolas Desroy
  • Mikaël Jaffré
  • Magda Vincx
  • Marijn Rabaut
Original Paper


The tube-building polychaete Lanice conchilega can form dense populations, often called reefs, which promote benthic community change and constitute feeding grounds for secondary consumers. The aim of this study was to quantify the role of the L. conchilega reef of the Bay of the Mont Saint-Michel (BMSM) for feeding waders, by combining macrobenthos data, bird counts and bird diet information. Wader densities in the reef were on average 46.6 times higher than in non-reef areas. According to faecal analyses, waders in the reef mainly selected the accompanying fauna and especially crustaceans. The attractiveness of the reef to feeding birds may be largely explained by the high abundance, richness and biomass of macrobenthic species in the reef compared with the rest of the BMSM.


Faecal Sample Bird Species Polychaete Tidal Flat Benthic Macrofauna 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Matthieu Beaufils (Bretagne-Vivante/SEPNB, La société pour l’Etude et la Protection de la Nature en Bretagne, and GONm, Groupe Ornithologique Normand), Sébastien Provost (GONm) and Régis Morel (Bretagne-Vivante/SEPNB) for coordinating and providing the bird counts at the scale of the BMSM for 2009. Both Bretagne-Vivante/SEPNB and the GONm are acknowledged for funding the counts at the scale of the BMSM. Thanks to Thomas Brey for providing and helping with the empirical model to estimate benthic production and to Andrea Moore for help with the faecal analysis. We also thank the anonymous reviewers who improved earlier versions of the manuscript. The first author acknowledges a PhD scholarship provided by the Special Research Fund (BOF), Ghent University, Belgium. The second author acknowledges the ‘Centre National de la Recherche Scientifique’ for his Post Doc Grant.


  1. Barrett RT, Camphuysen K, Anker-Nilssen T, Chardine JW, Furness RW, Garthe S, Hüppop O, Leopold MF, Montevecchi WA, Veit RR (2007) Diet studies of seabirds: a review and recommendations. ICES J Mar Sci 64(9):1675–1691CrossRefGoogle Scholar
  2. Beaufils M, Morel R, Provost S (2009) Suivi 2009 de la fréquentation de la Baie du Mont Saint-Michel par les oiseaux d’eau. Rapport SEPNB-GONmGoogle Scholar
  3. Braeckman U, Provoost P, Sabbe K, Soetaert K, Middelburg JJ, Vincx M, Vanaverbeke J (2012) Temporal dynamics in the diet of two marine polychaetes as inferred from fatty acid biomarkers. J Sea Res 68:6–19. doi: 10.1016/j.seares.2011.11.003 CrossRefGoogle Scholar
  4. Brey T (1999) A collection of empirical relations for use in ecological modelling. NAGA ICLARM Q 22(3):24–28Google Scholar
  5. Brey T (2001) Population dynamics in benthic invertebrates. A virtual handbook. Accessed 1 Feb 2012
  6. Brey T, Muller-Wiegmann C, Zittier ZMC, Hagen W (2010) Body composition in aquatic organisms—a global data bank of relationships between mass, elemental composition and energy content. J Sea Res 64(3):334–340. doi: 10.1016/j.seares.2010.05.002 CrossRefGoogle Scholar
  7. Callaway R (2006) Tube worms promote community change. Mar Ecol-Prog Ser 308:49–60. doi: 10.3354/meps308049 CrossRefGoogle Scholar
  8. Callaway R, Desroy N, Dubois SF, Fournier J, Frost M, Godet L, Hendrick VJ, Rabaut M (2010) Ephemeral bio-engineers or reef-building polychaetes: how stable are aggregations of the tube worm Lanice conchilega (Pallas, 1766)? Integr Comp Biol 50(2):237–250. doi: 10.1093/icb/icq060 CrossRefGoogle Scholar
  9. Carey DA (1987) Sedimentological effects and paleoecological implications of the tube-building polychaete Lanice conchilega Pallas. Sedimentology 34(1):49–66. doi: 10.1111/j.1365-3091.1987.tb00559.x CrossRefGoogle Scholar
  10. Clarke KR, Warwick RM (1994) Change in marine communities: an approach to statistical analysis and interpretation. Primer-E Plymouth Marine Laboratory, UKGoogle Scholar
  11. Connor EF, McCoy ED (1979) The statistics and biology of the species-area relationship. Am Nat 113(6):791–833CrossRefGoogle Scholar
  12. Dauvin JC, Joncourt M (1989) Energy values of marine benthic invertebrates from the western English channel. J Mar Biol Assoc UK 69(3):589–595CrossRefGoogle Scholar
  13. Deceuninck B, Mahéo R (2000) Synthèse des dénombrements et analyse des tendances des limicoles hivernant en France 1978–1999. Rapport DNP:82Google Scholar
  14. Eybert M-C, Geslin T, Questiau S, Feunteun E (2003) Shorebird community variations indicative of a general perturbation in the Mont-Saint-Michel (France). CR Biol 326:140–147CrossRefGoogle Scholar
  15. Feral P (1989) Influence des populations de Lanice conchilega (Pallas) (Annelida, Polychaeta) sur la sedimentation sableuse intertidale de deux plages bas-normandes (France). Bull Soc Geol Fr 8:1193–1200Google Scholar
  16. Godet L, Toupoint N, Olivier F, Fournier J, Retière C (2008) Considering the functional value of common marine species as a conservation stake: the case of sandmason worm Lanice conchilega (Pallas 1766) (Annelida, Polychaeta) beds. Ambio 37(5):347–355. doi: 10.1579/07-a-317.1 CrossRefGoogle Scholar
  17. Godet L, Toupoint N, Fournier J, Le Mao P, Retiere C, Olivier F (2009) Clam farmers and oystercatchers: effects of the degradation of Lanice conchilega beds by shellfish farming on the spatial distribution of shorebirds. Mar Pollut Bull 58(4):589–595. doi: 10.1016/j.marpolbul.2008.11.001 CrossRefGoogle Scholar
  18. Godet L, Fournier J, Jaffre M, Desroy N (2011) Influence of stability and fragmentation of a worm-reef on benthic macrofauna. Estuar Coast Shelf Sci 92(3):472–479. doi: 10.1016/j.ecss.2011.02.003 CrossRefGoogle Scholar
  19. Goss-Custard JD (1977) The energetics of prey selection by redshank, Tringa totanus (L.), in relation to prey density. J Anim Ecol 46(1):1–19CrossRefGoogle Scholar
  20. Goss-Custard JD, Jones RE (1976) The diets of redshank and curlew. Bird Study 23:233–270CrossRefGoogle Scholar
  21. Hartmann-Schröder G (1996) Annelida, Borstenwürmer, Polychaeta. Gustav Fischer, Jena, Germany, p 648Google Scholar
  22. Hulscher JB (1982) The oystercatcher Haematopus ostralegus as a predator of the bivalve Macoma balthica in the Dutch Wadden Sea. Ardea 70(2):89–152Google Scholar
  23. Jones SE, Jago CF (1993) In situ assessment of modification of sediment properties by burrowing invertebrates. Mar Biol 115:133–142CrossRefGoogle Scholar
  24. Le Drean-Quenec’hdu S, Mahéo R, Boret P (1995) The Mont Saint-Michel bay: a site of international importance for wintering Palearctic waders. Wader Study Group Bull 77:50–54Google Scholar
  25. Le Drean-Quenec’hdu S, Mahéo R, Boret P (1998) Les limicoles. Penn ar bed 169: La Baie du Mont Saint-Michel:1–10Google Scholar
  26. Leloup FA, Desroy N, Le Mao P, Pauly D, Le Pape O (2008) Interactions between a natural food web, shellfish farming and exotic species: the case of the Bay of Mont Saint Michel (France). Estuar Coast Shelf Sci 76(1):111–120. doi: 10.1016/j.ecss.2007.06.011 CrossRefGoogle Scholar
  27. Petersen B, Exo KM (1999) Predation of waders and gulls on Lanice conchilega tidal flats in the Wadden Sea. Mar Ecol Prog Ser 178:229–240. doi: 10.3354/meps178229 CrossRefGoogle Scholar
  28. Rabaut M, Guilini K, Van Hoey G, Vincx M, Degraer S (2007) A bio-engineered soft-bottom environment: the impact of Lanice conchilega on the benthic species-specific densities and community structure. Estuar Coast Shelf Sci 75(4):525–536. doi: 10.1016/j.ecss.2007.05.041 CrossRefGoogle Scholar
  29. Rabaut M, Vincx M, Degraer S (2009) Do Lanice conchilega (sandmason) aggregations classify as reefs? quantifying habitat modifying effects. Helgoland Mar Res 63(1):37–46. doi: 10.1007/s10152-008-0137-4 CrossRefGoogle Scholar
  30. Rabaut M, Van de Moortel L, Vincx M, Degraer S (2010) Biogenic reefs as structuring factor in Pleuronectes platessa (Plaice) nursery. J Sea Res 64(1–2):102–106. doi: 10.1016/j.seares.2009.10.009 CrossRefGoogle Scholar
  31. Retière C (1979) Contribution à la connaissance des peuplements benthiques du Golfe Normano-Breton. Dissertation, Université de RennesGoogle Scholar
  32. Ricciardi A, Bourget E (1998) Weight-to-weight conversion factors for marine benthic macroinvertebrates. Mar Ecol Prog Ser 163:245–251. doi: 10.3354/meps163245 CrossRefGoogle Scholar
  33. Rijnsdorp AD, Vingerhoed B (2001) Feeding of plaice Pleuronectes platessa L. and sole Solea solea (L.) in relation to the effects of bottom trawling. J Sea Res 45(3–4):219–229. doi: 10.1016/s1385-1101(01)00047-8 CrossRefGoogle Scholar
  34. Scheiffarth G (2001) The diet of Bar-tailed Godwits Limosa lapponica in the Wadden Sea: combining visual observations and faeces analyses. Ardea 89(3):481–494Google Scholar
  35. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423Google Scholar
  36. Thorin S, Radureau A, Feunteun E, Lefeuvre JC (2001) Preliminary results on a high east-west gradient in the macrozoobenthic community structure of the macrotidal Mont Saint-Michel bay. Cont Shelf Res 21(18–19):2167–2183. doi: 10.1016/s0278-4343(01)00050-4 CrossRefGoogle Scholar
  37. Trigui RJ (2009) Influence des facteurs environnementaux et anthropiques sur la structure et la fonctionnement des peuplements benthiques du Golfe Normano-Breton. Dissertation, Muséum National d’Histoire Naturelle, FranceGoogle Scholar
  38. Van Hoey G, Vincx M, Degraer S (2006) Some recommendations for an accurate estimation of Lanice conchilega density based on tube counts. Helgoland Mar Res 60(4):317–321. doi: 10.1007/s10152-006-0041-8 CrossRefGoogle Scholar
  39. Van Hoey G, Guilini K, Rabaut M, Vincx M, Degraer S (2008) Ecological implications of the presence of the tube-building polychaete Lanice conchilega on soft-bottom benthic ecosystems. Mar Biol 154(6):1009–1019. doi: 10.1007/s00227-008-0992-1 CrossRefGoogle Scholar
  40. Yates MG, Goss-Custard JD, McGrorty S, Lakhani KH, Durell S, Clarke RT, Rispin WE, Moy I, Yates T, Plant RA, Frost AJ (1993) Sediment characteristics, invertebrate densities and shorebird densities on the inner banks of the Wash. J Appl Ecol 30(4):599–614. doi: 10.2307/2404240 CrossRefGoogle Scholar
  41. Zühlke R (2001) Polychaete tubes create ephemeral community patterns: Lanice conchilega (Pallas, 1766) associations studied over six years. J Sea Res 46(3–4):261–272. doi: 10.1016/s1385-1101(01)00091-0 CrossRefGoogle Scholar
  42. Zühlke R, Blome D, Van Bernem KH, Dittmann S (1998) Effects of the tube-building polychaete Lanice conchilega (Pallas) on benthic macrofauna and nematodes in an intertidal sandflat. Senckenb Marit 29:131–138CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Bart De Smet
    • 1
    Email author
  • Laurent Godet
    • 2
  • Jérôme Fournier
    • 3
    • 4
  • Nicolas Desroy
    • 5
  • Mikaël Jaffré
    • 6
  • Magda Vincx
    • 1
  • Marijn Rabaut
    • 1
  1. 1.Department of Biology, Marine Biology SectionGhent UniversityGhentBelgium
  2. 2.CNRS, UMR 6554 LETG-Nantes GéolittomerUniversité de NantesNantes Cedex 3France
  3. 3.CNRS, UMR 7208 BOREAMuséum National d’Histoire NaturelleParis Cedex 05France
  4. 4.Station Marine de Dinard, USM 404 Muséum National d’Histoire NaturelleDinardFrance
  5. 5.IFREMER Laboratoire Environnement et Ressources FBNCRESCODinardFrance
  6. 6.Université de Lille 1, UMR 8187 LOG, Station Marine de WimereuxWimereuxFrance

Personalised recommendations