Marine Biology

, Volume 160, Issue 8, pp 2157–2173 | Cite as

The physiological and molecular responses of larvae from the reef-building coral Pocillopora damicornis exposed to near-future increases in temperature and pCO2

  • H. M. Putnam
  • A. B. Mayfield
  • T. Y. Fan
  • C. S. Chen
  • R. D. Gates
Original Paper


Given the threats of greenhouse gas emissions and a changing climate to marine ecosystems, there is an urgent need to better understand the response of not only adult corals, which are particularly sensitive to environmental changes, but also their larvae, whose mechanisms of acclimation to both temperature increases and ocean acidification are not well understood. Brooded larvae from the reef coral Pocillopora damicornis collected from Nanwan Bay, Southern Taiwan, were exposed to ambient or elevated temperature (25 or 29 °C) and pCO2 (415 or 635 μatm) in a factorial experiment for 9 days, and a variety of physiological and molecular parameters were measured. Respiration and rubisco protein expression decreased in larvae exposed to elevated temperature, while those incubated at high pCO2 were larger in size. Collectively, these findings highlight the complex metabolic and molecular responses of this life history stage and the need to integrate our understanding across multiple levels of biological organization. Our results also suggest that for this pocilloporid larval life stage, the impacts of elevated temperature are likely a greater threat under near-future predictions for climate change than ocean acidification.


Ocean Acidification High pCO2 rbcL Gene Coral Reef Ecosystem Larval Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to the staff and students of the NMMBA and technical assistance from Okay Chan, Yao-Hung Chen, Yi-Yuong Hsiao, Peter Edmunds, Vivian Cumbo, and Aaron Dufault. We thank Gretchen Hofmann and her program for seawater chemistry protocols (work supported by the United States National Science Foundation [NSF] awards OCE-1040960 and ANT-0944201 to GEH). We would also like to thank three anonymous reviewers for their comments, which have greatly improved the manuscript. This study was supported by grants from NSF (BIO-OCE 08-44785 to PJE and OCE-0752604 to RDG), and funding from the International Society for Reef Studies, the Ocean Conservancy, and the American Fisheries Society to HMP. ABM was funded by an NSF international postdoctoral research fellowship (OISE-0852960). In addition, this research was developed under STAR Fellowship Assistance Agreement no. FP917199 awarded by the U.S. Environmental Protection Agency (EPA). This manuscript has not been formally reviewed by the EPA, and the views expressed are solely those of the authors. The EPA does not endorse any products or commercial services mentioned in this manuscript. This manuscript is HIMB contribution number 1531 and SOEST contribution number 8795.

Supplementary material

227_2012_2129_MOESM1_ESM.doc (86 kb)
Supplementary material 1 (DOC 85 kb)


  1. Ainsworth TD, Hoegh-Guldberg O, Heron SF, Skirving WJ, Leggat W (2008) Early cellular changes are indicators of pre-bleaching thermal stress in the coral host. J Exp Mar Biol Ecol 364:63–71. doi: 10.1016/j.jembe.2008.06.032 CrossRefGoogle Scholar
  2. Albright R (2011) Reviewing the effects of ocean acidification on sexual reproduction and early life history stages of reef-building corals. J Mar Biol Article ID 473615, pp 14. doi: 10.1155/2011/473615
  3. Albright R, Langdon C (2011) Ocean acidification impacts multiple early life history processes of the Caribbean coral Porites astreoides. Glob Change Biol 17:2478–2487. doi: 10.1111/j.1365-2486.2011.02404.x CrossRefGoogle Scholar
  4. Albright R, Mason B, Miller M, Langdon C (2010) Ocean acidification compromises recruitment success of the threatened Caribbean coral Acropora palmata. Proc Natl Acad Sci USA 107:20400–20404. doi: 10.1073/pnas.1007273107 CrossRefGoogle Scholar
  5. Anlauf H, D’Croz L, O’Dea A (2011) A corrosive concoction: the combined effects of ocean warming and acidification on the early growth of a stony coral are multiplicative. J Exp Mar Biol Ecol 397:13–20. doi: 10.1016/j.jembe.2010.11.009 CrossRefGoogle Scholar
  6. Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci USA 105:17442–17446. doi: 10.1073/pnas.0804478105 CrossRefGoogle Scholar
  7. Aranda M, Banaszak AT, Bayer T, Luyten JR, Medina M, Voolstra CR (2011) Differential sensitivity of coral larvae to natural levels of ultraviolet radiation during the onset of larval competence. Mol Ecol 20:2955–2972. doi: 10.1111/j.1365-294X.2011.05153.x CrossRefGoogle Scholar
  8. Bassim KM, Sammarco PW (2003) Effects of temperature and ammonium on larval development and survivorship in a scleractinian coral (Diploria strigosa). Mar Biol 142:241–252. doi: 10.1007/s00227-002-0953-z Google Scholar
  9. Brown BE, Dunne RP, Goodson S, Douglas AE (2002) Experience shapes the susceptibility of a reef coral to bleaching. Coral Reefs 12:119–126Google Scholar
  10. Byrne M (2011a) Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanogr Mar Biol Ann Rev 49:1–42Google Scholar
  11. Byrne M (2011b) Global change ecotoxicology: identification of early life history bottlenecks in marine invertebrates, variable species responses and variable experimental approaches. Mar Environ Res 76:3–15. doi: 10.1016/j.marenvres.2011.10.004 CrossRefGoogle Scholar
  12. Chauvin A, Denis V, Cuet P (2011) Is the response of coral calcification to seawater acidification related to nutrient loading? Coral Reefs 30:911–923. doi: 10.1007/s00338-011-0786-7 CrossRefGoogle Scholar
  13. Coles SL, Brown BE (2003) Coral bleaching-capacity for acclimatization and adaptation. Adv Mar Biol 46:183–223CrossRefGoogle Scholar
  14. Coles SL, Jokiel PL (1977) Effects of temperature on photosynthesis and respiration in hermatypic corals. Mar Biol 43:209–216CrossRefGoogle Scholar
  15. Crawley A, Kline D, Dunn S, Anthony K, Dove S (2010) The effect of ocean acidification on symbiont photorespiration and productivity in Acropora formosa. Glob Change Biol 16:851–863. doi: 10.1111/j.1365-2486.2009.01943.x CrossRefGoogle Scholar
  16. Dickson A, Millero F (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res 34:1733–1743CrossRefGoogle Scholar
  17. Dickson A, Sabine C, Christian J (2007) Guide to best practices for ocean CO2 measurement. In: Dickson A, Sabine C, Christian J (eds) PICES Special Publication 3Google Scholar
  18. Doney SC, Balch WM, Fabry VJ, Feely RA (2009a) Ocean acidification: a critical emerging problem for the ocean sciences. Oceanography 22:16–25CrossRefGoogle Scholar
  19. Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009b) Ocean acidification: the other CO2 problem. Ann Rev Mar Sci 1:169–192CrossRefGoogle Scholar
  20. Donner SD (2009) Coping with commitment: projected thermal stress on coral reefs under different future scenarios. PLoS One 4(6):e5712. doi: 10.1371/journal.pone.0005712 CrossRefGoogle Scholar
  21. Downs CA, Mueller E, Phillips S, Fauth JE, Woodley CM (2000) A molecular biomarker system for assessing the health of coral (Montastraea faveolata) during heat stress. Mar Biotechnol 2:533–544. doi: 10.1007/s101260000038 CrossRefGoogle Scholar
  22. Drake BG, Gonzalez-Meler MA, Long SP (1997) More efficient plants: a consequence of rising atmospheric CO2? Annu Rev Plant Physiol Plant Mol Biol 48:609–639. doi: 10.1146/annurev.arplant.48.1.609 CrossRefGoogle Scholar
  23. Dupont S, Dorey N, Thorndyke M (2010a) What meta-analysis can tell us about vulnerability of marine biodiversity to ocean acidification? Estuar Coast Shelf Sci 89:182–185. doi: 10.1016/j.ecss.2010.06.013 CrossRefGoogle Scholar
  24. Dupont S, Lundve B, Thorndyke M (2010b) Near future ocean acidification increases growth rate of the lecithotrophic larvae and juveniles of the sea star Crossaster papposus. J Exp Zool (Mol Dev Evol) 314B:382–389CrossRefGoogle Scholar
  25. Dupont S, Moya A, Bailly X (2012) Stable photosymbiotic relationship under CO2-induced acidification in the acoel worm Symsagittifera roscoffensis. PLoS One 7(1):e29568. doi: 10.1371/journal.pone.0029568 CrossRefGoogle Scholar
  26. Edmunds PJ (2011) Zooplanktivory ameliorates the effects of ocean acidification on the reef coral Porites spp. Limnol Oceanogr 56:2402–2410. doi: 10.4319/lo.2011.56.6.2402 CrossRefGoogle Scholar
  27. Edmunds PJ, Gates RD, Gleason DF (2001) The biology of larvae from the reef coral Porites astreoides, and their response to temperature disturbances. Mar Biol 139:981–989. doi: 10.1007/s002270100634 CrossRefGoogle Scholar
  28. Edmunds PJ, Cumbo V, Fan TY (2011) Effects of temperature on the respiration of brooded larvae from tropical reef corals. J Exp Biol 214:2783–2790. doi: 10.1242/jeb.055343 CrossRefGoogle Scholar
  29. Edmunds PJ, Brown D, Moriarty V (2012) Interactive effects of ocean acidification and temperature on two scleractinian corals from Moorea, French Polynesia. Glob Change Biol 18:2173–2183. doi: 10.1111/j.1365-2486.2012.02695.x CrossRefGoogle Scholar
  30. Erez J, Reynaud S, Silverman J, Schneider K, Allemand D (2011) Coral calcification under ocean acidification and global change. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Berlin, pp 151–176CrossRefGoogle Scholar
  31. Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Okazaki R, Muehllehner N, Glas M, Lough JM (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Change 1:165–169. doi: 10.1038/nclimate1122 CrossRefGoogle Scholar
  32. Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432. doi: 10.1093/icesjms/fsn048 CrossRefGoogle Scholar
  33. Falkowski PG, Raven JA (2007) Aquatic photosynthesis, 2nd edn. Princeton University Press, Princeton pp 484Google Scholar
  34. Fan TY, Li JJ, Ie SX, Fang LS (2002) Lunar periodicity of larval release by pocilloporid corals in southern Taiwan. Zool Stud 41(3):288–294Google Scholar
  35. Fangue NA, O’Donnell MJ, Sewell MA, Matson PG, MacPherson AC, Hofmann GE (2010) A laboratory-based, experimental system for the study of ocean acidification effects on marine invertebrate larvae. Limnol Oceanogr Methods 8:441–452. doi: 10:4319/lom.2010.8.441 CrossRefGoogle Scholar
  36. Feder ME, Hofmann GE (1999) Heat shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282CrossRefGoogle Scholar
  37. Fitt WK, Brown BE, Warner ME, Dunne RP (2001) Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20:51–65. doi: 10.1007/s003380100146 CrossRefGoogle Scholar
  38. Ganot P, Moya A, Magnone V, Allemand D, Furla P, Sabourault C (2011) Adaptations to endosymbiosis in a cnidarian-dinoflagellate association: differential gene expression and specific gene duplications. PLoS Genet 7(7):e1002187. doi: 10.1371/journal.pgen.1002187 CrossRefGoogle Scholar
  39. Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440:1186–1189. doi: 10.1038/nature04565 CrossRefGoogle Scholar
  40. Hashimoto K, Shibuno T, Murayama-Kayano E, Tanaka H, Kayano T (2004) Isolation and characterization of stress-responsive genes from the scleractinian coral Pocillopora damicornis. Coral Reefs 23:485–491. doi: 10.1007/s00338-004-0410-1 Google Scholar
  41. Hochachka PW, Somero GN (2002) Biochemical adaptation. Oxford University Press, Oxford pp 466Google Scholar
  42. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742. doi: 10.1126/science.1152509 CrossRefGoogle Scholar
  43. Hofmann GE, Todgham AE (2010) Living in the now: physiological mechanisms to tolerate a rapidly changing environment. Annu Rev Physiol 72:127–145. doi: 10.1146/annurev-physiol-021909-135900 CrossRefGoogle Scholar
  44. Hofmann GE, Buckley BA, Place SP, Zippay ML (2002) Molecular chaperones in ecothermic marine animals: biochemical function and gene expression. Integr Comp Biol 42:808–814CrossRefGoogle Scholar
  45. Hofmann GE, Barry JP, Edmunds PJ, Gates RD, Hutchins DA, Klinger T, Sewell MA (2010) The effect of ocean acidification on calcifying marine organisms in marine ecosystems: an organism to ecosystem perspective. Annu Rev Ecol Evol Syst 41:127–147. doi: 10.1146/annurev.ecolsys.110308.120227 CrossRefGoogle Scholar
  46. Isomura N, Nishihira M (2001) Size variation of planulae and its effect on the lifetime of planulae in three pocilloporid corals. Coral Reefs 20:309–315. doi: 10.1007/s003380100180 CrossRefGoogle Scholar
  47. Jones RJ, Ward S, Amri AY, Hoegh-Guldberg O (2000) Changes in quantum efficiency of photosystem II of symbiotic dinoflagellates of corals after heat stress and of bleached corals sampled after the 1998 Great Barrier Reef bleaching event. Mar Fresh Res 51:63–71. doi: 10.1071/MF99100 CrossRefGoogle Scholar
  48. Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13:1419–1434. doi: 10.1111/j.1461-0248.2010.01518.x CrossRefGoogle Scholar
  49. Kurihara H (2008) Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar Ecol Prog Ser 373:275–284. doi: 10.3354/meps07802 CrossRefGoogle Scholar
  50. Langdon C, Atkinson MJ (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J Geophys Res 110:C09S07. doi: 10.1029/2004JC002576
  51. Leggat W, Badger MR, Yellowlees D (1999) Evidence for an inorganic carbon-concentrating mechanism n the symbiotic dinoflagellate Symbiodinium sp. Plant Physiol 121:1247–1255CrossRefGoogle Scholar
  52. Leggat W, Whitney S, Yellowlees D (2004) Is coral bleaching due to the instability of the zooxanthellae dark reactions? Symbiosis 37:137–153Google Scholar
  53. Leggat W, Seneca F, Wasmund K, Ukani L, Yellowlees D, Ainsworth TD (2011) Differential responses of the coral host and their algal symbiont to thermal stress. PLoS One 6(10):e26687. doi: 10.1371/journal.pone.0026687 CrossRefGoogle Scholar
  54. Lesser MP (1997) Oxidative stress causes coral bleaching during exposure to elevated temperatures. Coral Reefs 16:187–192CrossRefGoogle Scholar
  55. Lesser MP (2011) Coral bleaching: causes and mechanisms. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Berlin, pp 405–420Google Scholar
  56. Levy O, Kaniewska P, Alon S, Karako-Lampert S, Bay LK, Reef R, Rodriguez-Lanetty M, Miller DJ, Hoegh-Guldberg O (2011) Complex diel cycles of gene expression in coral-algal symbiosis. Science 331:175. doi: 10.1126/science.1196419 CrossRefGoogle Scholar
  57. Mayfield AB, Hirst MB, Gates RD (2009) Gene expression normalization in a dual-compartment system: a real-time quantitative polymerase chain reaction protocol for symbiotic anthozoans. Mol Ecol Res 9:462–470. doi: 10.1111/j.1755-0998.2008.02349.x CrossRefGoogle Scholar
  58. Mayfield AB, Hsiao YY, Fan TY, Chen CS, Gates RD (2010) Evaluating the temporal stability of stress-activated protein kinase and cytoskeleton gene expression in the Pacific corals Pocillopora damicornis and Seriatopora hystrix. J Exp Mar Biol Ecol 395:215–222. doi: 10.1016/j.jembe.2010.09.007 CrossRefGoogle Scholar
  59. Mayfield AB, Wang LH, Tang PC, Fan TY, Hsiao YY, Tsai CL, Chen CS (2011) Assessing the impacts of experimentally elevated temperature on the biological composition and molecular chaperone gene expression of a reef coral. PLoS One 6(10):e26529. doi: 10.1371/journal.pone.0026529 CrossRefGoogle Scholar
  60. Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907CrossRefGoogle Scholar
  61. Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque J-F, Matsumoto K, Montzka SA, Raper SCB, Riahi K, Thomson A, Velders GJM, van Vuuren DPP (2011) The RPC greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109:213–241. doi: 10.1007/s10584-011-0156-z CrossRefGoogle Scholar
  62. Melzner F, Gutowska MA, Langenbuch M, Dupont S, Lucassen M, Thorndyke MC, Bleich M, Pörtner H-O (2009) Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences 6:2313–2331CrossRefGoogle Scholar
  63. Meyer E, Aglyamova GV, Matz MV (2011) Profiling gene expression responses of coral larvae (Acropora millepora) to elevated temperature and settlement inducers using a novel RNA-Seq procedure. Mol Ecol 20:3599–3616. doi: 10.1111/j.1365-294X.2011.05205.x Google Scholar
  64. Moore BD, Cheng S-H, Rice J, Seeman JR (1998) Sucrose cycling, Rubisco expression, and prediction of photosynthetic acclimation to elevated atmospheric CO2. Plant Cell Environ 21:905–915CrossRefGoogle Scholar
  65. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi: 10.1038/nature08823 CrossRefGoogle Scholar
  66. Munday PL, Dixson DL, Donelson JM, Jones GP, Pratchett MS, Devitsina GV, Døving KB (2009) Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc Natl Acad Sci USA 106:1848–1852. doi: 10.1073/pnas.0809996106 CrossRefGoogle Scholar
  67. Muscatine L, McCloskey LR, Marian RE (1981) Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol Oceanogr 26:601–611CrossRefGoogle Scholar
  68. Muscatine L, Falkowski PG, Porter JW, Dubinsky Z (1984) Fate of photosynthetic fixed carbon in light- and shade-adapted colonies of the symbiotic coral Stylophora pistillata. Proc R Soc Lond B 222:181–202CrossRefGoogle Scholar
  69. Muscatine L, Porter JW, Kaplan IR (1989) Resource partitioning by reef corals as determined from stable isotope composition. Mar Biol 100:185–193CrossRefGoogle Scholar
  70. Nakamura M, Morita M, Kurihara H, Mitarai S (2011a) Expression of hsp70, hsp90 and hsf1 in the reef coral Acropora digitifera under prospective acidified conditions over the next several decades. Biol Open BIO2011036. doi: 10.1242/bio.2011036
  71. Nakamura M, Ohki A, Suzuki A, Sakai K (2011b) Coral larvae under ocean acidification: survival, metabolism, and metamorphosis. PLoS One 6:e14521. doi: 10.1371/journal.pone.0014521 CrossRefGoogle Scholar
  72. Negri AP, Marshall PA, Heyward AJ (2007) Differing effects of thermal stress on coral fertilization and early embryogenesis in four Indo Pacific species. Coral Reefs 26:759–763. doi: 10.1007/s00338-007-0258-2 CrossRefGoogle Scholar
  73. Pandolfi JM, Jackson JBC, Baron N, Bradbury RH, Guzman HM, Hughes TP, Kappel CV, Micheli F, Possingham HP, Sala E (2005) Are US reefs on the slippery slope to slime? Science 307:1725–1726. doi: 10.1126/science.1104258 CrossRefGoogle Scholar
  74. Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333:418–422. doi: 10.1126/science.1204794 CrossRefGoogle Scholar
  75. Parker LM, Ross PM, O’Connor WA, Borysko L, Raftos DA, Pörtner H-O (2012) Adult exposure influences offspring response to ocean acidification in oysters. Glob Change Biol 18:82–92. doi: 10.1111/j.1365-2486.2011.02520.x CrossRefGoogle Scholar
  76. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669. doi: 10.1146/annurev.ecolsys.37.091305.110100 CrossRefGoogle Scholar
  77. Parry MAJ, Keys AJ, Madgwick PJ, Carmo-Silva AE, Andralojc PJ (2008) Rubisco regulation: a role for inhibitors. J Exp Bot 59:1569–1580. doi: 10.1093/jxb/ern084 CrossRefGoogle Scholar
  78. Pierrot D, Lewis E, Wallace DWR (2006) MS Excel program developed for CO2 system calculations. ORNL/CDIAC-105aGoogle Scholar
  79. Pörtner H-O (2008) Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Mar Ecol Prog Ser 373:203–217. doi: 10.3354/meps07768 CrossRefGoogle Scholar
  80. Pörtner H-O, Farrell AP (2008) Physiology and climate change. Science 332:690–691. doi: 10.1126/science.1163156 CrossRefGoogle Scholar
  81. Pörtner H-O, Bennett AF, Bozinovic F, Clarke A, Lardies MA, Lucassen M, Pelster B, Schiemer F, Stillman JH (2006) Trade-offs in thermal adaptation: the need for molecular to ecological integration. Phys Biochem Zool 79:295–313. doi: 10.1086/499986 CrossRefGoogle Scholar
  82. Putnam HM, Edmunds PJ, Fan TY (2008) Effect of temperature on the settlement choice and photophysiology of larvae from the reef coral Stylophora pistillata. Biol Bull 215:135–142CrossRefGoogle Scholar
  83. Putnam HM, Edmunds PJ, Fan TY (2010) Effect of a fluctuating thermal regime on adult and larval reef corals. Invertebr Biol 129:199–209. doi: 10.1111/j.17447410.2010.00199.x CrossRefGoogle Scholar
  84. Randall CJ, Szmant AM (2009) Elevated temperature reduces survivorship and settlement of the larvae of the Caribbean scleractinian coral, Favia fragum (Esper). Coral Reefs 28:537–545. doi: 10.1007/s00338-009-0482-z CrossRefGoogle Scholar
  85. Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5 A scenario of comparatively high greenhouse gas emissions. Clim Change 109:33–57. doi: 10.1007/s10584-011-0149-y CrossRefGoogle Scholar
  86. Riebesell U, Fabry VJ, Hansson L, Gattuso J-P (eds) (2010) Guide to best practices for ocean acidification research and data reporting. European Commission, Brussels. doi: 10.2777/58454 Google Scholar
  87. Rodriguez-Lanetty M, Harii S, Hoegh-Guldberg O (2009) Early molecular responses of coral larvae to hyperthermal stress. Mol Ecol 18:5101–5114. doi: 10.1111/j.1365-294X.2009.04419.x CrossRefGoogle Scholar
  88. Stumpp A, Dupont ST, Thorndyke MC, Melzner F (2011a) CO2 induced seawater acidification impacts sea urchin larval development II: gene expression patterns in pluteus larvae. Comp Biochem Physiol A 160:320–330. doi: 10.1016/j.cbpa.2011.06.023 CrossRefGoogle Scholar
  89. Stumpp A, Wren J, Melzner F, Thorndyke MC, Dupont ST (2011b) CO2 induced seawater acidification impacts sea urchin larval development I: elevated metabolic rates decrease scope for growth and induce developmental delay. Comp Biochem Physiol A 160:331–340. doi: 10.1016/j.cbpa.2011.06.022 CrossRefGoogle Scholar
  90. Sunday JM, Crim RN, Harley CDG, Hart MW (2011) Quantifying rates of evolutionary adaptation in response to ocean acidification. PLoS One 6(8):e22881. doi: 10.1371/journal.pone.0022881 CrossRefGoogle Scholar
  91. Szmant AM, Gassman NJ (1990) The effects of prolonged “bleaching” on the tissue biomass and reproduction of the reef coral Montastrea annularis. Coral Reefs 8:217–224CrossRefGoogle Scholar
  92. Talmage SC, Gobler CJ (2010) Effects of past, present and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish. Proc Natl Acad Sci USA 107:17246–17251. doi: 10.1073/pnas.0913804107 CrossRefGoogle Scholar
  93. Talmage SC, Gobler CJ (2011) Effects of elevated temperature and carbon dioxide on the growth and survival of larvae and juveniles of three species of Northwest Atlantic bivalves. PLoS One 6(10):e26941. doi: 10.1371/journal.pone.0026941 CrossRefGoogle Scholar
  94. van Vuuren DP, Meinshausen M, Plattner GK, Joos F, Strassmann KM, Smith SJ, Wigley TML, Raper SCB, Riahi K, de la Chesnaye F, den Elzen MGJ, Fujino J, Jiang K, Nakicenovic N, Paltsev S, Reilly JM (2008) Temperature increase of 21st century mitigation scenarios. Proc Natl Acad Sci USA 105:15258–15262. doi: 10.1073/pnas.0711129105 CrossRefGoogle Scholar
  95. van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque J-F, Masiu T, Meinshausen M, Nakicenovi N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Change 109:5–31. doi: 10.1007/s10584-011-0148-z CrossRefGoogle Scholar
  96. Venn AA, Loram JE, Douglas AE (2008) Photosynthetic symbioses in animals. J Exp Bot 59:1069–1080. doi: 10.1093/jxb/erm328 CrossRefGoogle Scholar
  97. Veron JEN (2011) Ocean acidification and coral reefs: an emerging big picture. Diversity 3:262–274. doi: 10.3390/d3020262 CrossRefGoogle Scholar
  98. Yakovleva IM, Baird AH, Yamamoto HH, Bhagooli R, Nonaka M, Hidaka M (2009) Algal symbionts increase oxidative damage and death in coral larvae at high temperatures. Mar Ecol Prog Ser 378:105–112. doi: 10.3354/meps07857 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • H. M. Putnam
    • 1
  • A. B. Mayfield
    • 2
  • T. Y. Fan
    • 2
    • 3
  • C. S. Chen
    • 4
    • 5
    • 6
  • R. D. Gates
    • 1
  1. 1.Hawaii Institute of Marine BiologyUniversity of HawaiiKaneoheUSA
  2. 2.National Museum of Marine Biology and AquariumChecheng, PingtungTaiwan, ROC
  3. 3.Institute of Marine Biodiversity and EvolutionNational Dong-Hwa UniversityHualienTaiwan, ROC
  4. 4.Graduate Institute of Marine BiotechnologyNational Dong-Hwa UniversityHualienTaiwan, ROC
  5. 5.Taiwan Coral Research Center (TCRC)National Museum of Marine Biology and AquariumChecheng, PingtungTaiwan, ROC
  6. 6.Department of Marine Biotechnology and ResourcesNational Sun Yat-Sen UniversityKaohsiungTaiwan, ROC

Personalised recommendations