Marine Biology

, Volume 160, Issue 8, pp 2137–2144 | Cite as

Elevated CO2 affects the behavior of an ecologically and economically important coral reef fish

  • Philip L. MundayEmail author
  • Morgan S. Pratchett
  • Danielle L. Dixson
  • Jennifer M. Donelson
  • Geoff G. K. Endo
  • Adam D. Reynolds
  • Richard Knuckey
Original Paper


We tested the effect of near-future CO2 levels (≈490, 570, 700, and 960 μatm CO2) on the olfactory responses and activity levels of juvenile coral trout, Plectropomus leopardus, a piscivorous reef fish that is also one of the most important fisheries species on the Great Barrier Reef, Australia. Juvenile coral trout reared for 4 weeks at 570 μatm CO2 exhibited similar sensory responses and behaviors to juveniles reared at 490 μatm CO2 (control). In contrast, juveniles reared at 700 and 960 μatm CO2 exhibited dramatically altered sensory function and behaviors. At these higher CO2 concentrations, juveniles became attracted to the odor of potential predators, as has been observed in other reef fishes. They were more active, spent less time in shelter, ventured further from shelter, and were bolder than fish reared at 490 or 570 μatm CO2. These results demonstrate that behavioral impairment of coral trout is unlikely if pCO2 remains below 600 μatm; however, at higher levels, there are significant impacts on juvenile performance that are likely to affect survival and energy budgets, with consequences for predator–prey interactions and commercial fisheries.


Reef Fish Great Barrier Reef Coral Reef Fish Olfactory Response Predator Odor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank staff at James Cook University’s Marine Aquarium Facility and the Queensland Government’s Northern Fisheries Centre for logistical support. This research was supported by the ARC Centre of Excellence for Coral Reef Studies, the Australian Research Council and the adaptation research network for marine biodiversity and resources (NCCARF).


  1. Baumann H, Talmage SC, Gobler CJ (2012) Reduced early life growth and survival in a fish in direct response to increased carbon dioxide. Nat Clim Chang 2:38–41CrossRefGoogle Scholar
  2. Brauner CJ, Baker DW (2009) Patterns of acid–base regulation during exposure to hypercarbia in fishes. In: Glass ML, Wood SC (eds) Cardio-respiratory control in vertebrates. Springer, Berlin, pp 43–63CrossRefGoogle Scholar
  3. Cripps IL, Munday PL, McCormick MI (2011) Ocean Acidification Affects Prey Detection by a Predatory Reef Fish. PLoS One 6 e22736. doi: 10.1371/journal.pone.0022736
  4. Devine B, Munday PL, Jones GP (2012) Homing ability of adult cardinalfish is affected by elevated carbon dioxide. Oecologia 168:269–276CrossRefGoogle Scholar
  5. Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res Part A 34:1733–1743CrossRefGoogle Scholar
  6. Dixson DL, Munday PL, Jones GP (2010) Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecol Lett 13:68–75. doi: 10.1111/j.1461-0248.2009.01400.x CrossRefGoogle Scholar
  7. Domenici P, Allan B, McCormick MI, Munday PL (2012) Elevated carbon dioxide affects behavioural lateralization in a coral reef fish. Biol Lett 8:78–81. doi: 10.1098/rsbl.2011.0591 CrossRefGoogle Scholar
  8. Doney SC (2010) The growing human footprint on coastal and open-ocean biogeochemistry. Science 328:1512–1516. doi: 10.1126/science.1185198 CrossRefGoogle Scholar
  9. Esbaugh AJ, Heuer R, Grosell M (2012) Impacts of ocean acidification on respiratory gas exchange and acid–base balance in a marine teleost Opsanus beta. J Comp Physiol B. doi: 10.1007/s00360-012-0668-5 Google Scholar
  10. Ferrari MCO, Dixson DL, Munday PL, McCormick MI, Meekan MG, Sih A, Chivers DP (2011a) Intrageneric variation in antipredator responses of coral reef fishes affected by ocean acidification: implications for climate change projections on marine communities. Glob Chang Biol 17:2980–2986. doi: 10.1111/j.1365-2486.2011.02439.x CrossRefGoogle Scholar
  11. Ferrari MCO, McCormick MI, Munday PL, Meekan MG, Dixson DL, Lonnstedt O, Chivers DP (2011b) Putting prey and predator into the CO2 equation—qualitative and quantitative effects of ocean acidification on predator-prey interactions. Ecol Lett 14:1143–1148. doi: 10.1111/j.1461-0248.2011.01683.x CrossRefGoogle Scholar
  12. Frommel AY, Maneja R, Lowe D, Malzahn AM, Geffen AJ, Folkvord A, Piatkowski U, Reusch TBH, Clemmesen C (2012) Severe tissue damage in Atlantic cod larvae under increasing ocean acidification. Nat Clim Chang 2:42–46. doi: 10.1038/CLIMATE1324 CrossRefGoogle Scholar
  13. Gerlach G, Atema J, Kingsford MJ, Black KP, Miller-Sims V (2007) Smelling home can prevent dispersal of reef fish larvae. Proc Natl Acad Sci USA 104:858–863. doi: 10.1073/pnas.0606777104 CrossRefGoogle Scholar
  14. Hari P, Pumpanen J, Huotari J, Kolari P, Grace J, Vesala T, Ojala A (2008) High-frequency measurements of productivity of planktonic algae using rugged nondispersive infrared carbon dioxide probes. Limnol Oceanogr Meth 6:347–354CrossRefGoogle Scholar
  15. Hilmi N, Allemand D, Dupont S, Safa A, Haraldsson G, Nunes PD, Moore C, Hattam C, Reynaud S, Hall-Spencer JM, Fine M, Turley C, Jeffree R, Orr J, Munday PL, Cooley S (2012) Towards improved socio-economic assessments of ocean acidification’s impacts? Mar Biol. doi: 10.1007/s00227-012-2031-5 Google Scholar
  16. Hixon MA, Webster MS (2002) Density dependence in reef fish populations. In: Sale PF (ed) Coral reef fishes: dynamics and diversity in a complex ecosystem. Academic Press, San Diego, pp 303–325CrossRefGoogle Scholar
  17. Ishimatsu A, Hayashi M, Kikkawa T (2008) Fishes in high-CO2, acidified oceans. Mar Ecol-Prog Ser 373:295–302. doi: 10.3354/meps07823 CrossRefGoogle Scholar
  18. Leis JM, Carson-Ewart BM (1999) In situ swimming and settlement behaviour of larvae of an Indo-Pacific coral-reef fish, the coral trout Plectropomus leopardus (Pisces: Serranidae). Mar Biol 134:51–64. doi: 10.1007/s002270050524 CrossRefGoogle Scholar
  19. Mapstone BD, McKinlay JP, Davies CR (1996) A description of the commercial reef line fishery logbook data held by the Queensland Fisheries Management Authority. Report to the QFMA from the CRC Reef Research Centre and the Department of Tropical Environment Studies and Geography, James Cook University, Townsville, AustraliaGoogle Scholar
  20. Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limn Oceanogr 18:897–907CrossRefGoogle Scholar
  21. Meinshausen M, Smith S, Calvin K, Daniel J, Kainuma M, Lamarque JF, Matsumoto K, Montzka S, Raper S, Riahi K, Thompson A, Velders GJM, van Vurren DPP (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Chang 109:213–241CrossRefGoogle Scholar
  22. Melzner F, Gutowska MA, Langenbuch M, Dupont S, Lucassen M, Thorndyke MC, Bleich M, Portner HO (2009a) Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences 6:2313–2331CrossRefGoogle Scholar
  23. Melzner F, Göbel S, Langenbuch M, Gutowska MA, Pörtner HO, Lucassen M (2009b) Swimming performance in Atlantic Cod (Gadus morhua) following long-term (4–12 months) acclimation to elevated seawater PCO2. Aquatic Toxicol 92:30–37CrossRefGoogle Scholar
  24. Miller GM, Watson S, Donelson JM, McCormick MI, Munday PL (2012) Parental environment mediates impacts of increased carbon dioxide on a coral reef fish. Nat Clim Chang. doi: 10.1038/nclimate1599 Google Scholar
  25. Munday PL, Dixson DL, Donelson JM, Jones GP, Pratchett MS, Devitsina GV, Doving KB (2009a) Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc Natl Acad Sci USA 106:1848–1852. doi: 10.1073/pnas.0809996106 CrossRefGoogle Scholar
  26. Munday PL, Donelson JM, Dixson DL, Endo GGK (2009b) Effects of ocean acidification on the early life history of a tropical marine fish. Proc R Soc B-Biol Sci 276:3275–3283. doi: 10.1098/rspb.2009.0784 CrossRefGoogle Scholar
  27. Munday PL, Dixson DL, McCormick MI, Meekan M, Ferrari MCO, Chivers DP (2010) Replenishment of fish populations is threatened by ocean acidification. Proc Natl Acad Sci USA 107:12930–12934. doi: 10.1073/pnas.1004519107 CrossRefGoogle Scholar
  28. Munday PL, Gagliano M, Donelson JM, Dixson DL, Thorrold SR (2011) Ocean acidification does not affect the early life history development of a tropical marine fish. Mar Ecol Progr Ser 423:211–221CrossRefGoogle Scholar
  29. Munday PL, McCormick MI, Meekan M, Dixson DL, Watson S-A, Ferrari MCO, Chivers D (2012) Selective mortality associated with variation in CO2 tolerance in a marine fish. Ocean Acidification (in press)Google Scholar
  30. Nilsson GE, Dixson DL, Domenici P, McCormick MI, Sørensen C, Watson S-A, Munday PL (2012) Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nat Clim Chang 2:201–204CrossRefGoogle Scholar
  31. Ohde S, van Woesik R (1999) Carbon dioxide flux and metabolic processes of a coral reef, Okinawa. Bull Mar Sci 65:559–576Google Scholar
  32. Pratchett MS, Munday PL, Graham NAJ, Kronen M, Pinca S, Friedman K, Brewer TD et al (2011) Vulnerability of coastal fisheries in the tropical Pacific to climate change. In: Bell JD, Johnson JE, Hobday AJ (eds) Vulnerability of Tropical Pacific fisheries and aquaculture to climate change. Secretariat of the Pacific Community, Noumea, pp 493–576Google Scholar
  33. Ruttenberg BI, Hamilton SL, Walsh SM, Donovan MK, Friedlander A, DeMartini E, Sala E, Sandin SA (2011) Predator-Induced Demographic Shifts in Coral Reef Fish Assemblages. PLoS One 6 21062. doi: e2106210.1371/journal.pone.0021062
  34. Shamberger KEF, Feely RA, Sabine CL, Atkinson MJ, DeCarlo EH, Mackenzie FT, Drupp PS, Butterfield DA (2011) Calcification and organic production on a Hawaiian coral reef. Mar Chem 127:64–75. doi: 10.1016/j.marchem.2011.08.003 CrossRefGoogle Scholar
  35. Shaw EC, McNeil BI, Tilbrook B (2012) Impacts of ocean acidification in naturally variable coral reef flat ecosystems. J Geophys Res-Oceans 117:C03038. doi: 10.1029/2011JC007655 CrossRefGoogle Scholar
  36. Simpson SD, Munday PL, Wittenrich ML, Manassa R, Dixson DL, Gagliano M, Yan HY (2011) Ocean acidification erodes crucial auditory behaviour in a marine fish. Biol Lett 7:917–920. doi: 10.1098/rsbl.2011.0293 CrossRefGoogle Scholar
  37. Welch DJ, Mapstone BD, Begg GA (2008) Spatial and temporal variation and effects of changes in management in discard rates from the commercial reef line fishery of the Great Barrier Reef, Australia. Fish Res 90:247–260. doi: 10.1016/j.fishres.2007.10.023 CrossRefGoogle Scholar
  38. Wen CK, Pratchett MS, Almany GR, Jones GP (2012) Patterns of recruitment and microhabitat associations for three predatory coral reef fishes on the southern Great Barrier Reef, Australia. Coral Reefs (in press)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Philip L. Munday
    • 1
    • 2
    Email author
  • Morgan S. Pratchett
    • 1
  • Danielle L. Dixson
    • 1
    • 2
  • Jennifer M. Donelson
    • 1
    • 2
  • Geoff G. K. Endo
    • 2
  • Adam D. Reynolds
    • 3
  • Richard Knuckey
    • 3
  1. 1.ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleAustralia
  2. 2.School of Marine and Tropical BiologyJames Cook UniversityTownsvilleAustralia
  3. 3.Queensland Department of Employment, Economic Development and InnovationNorthern Fisheries CentreCairnsAustralia

Personalised recommendations