Marine Biology

, Volume 160, Issue 3, pp 737–742 | Cite as

A molecular method for the identification of resting eggs of acartiid copepods in the Thau lagoon, France

Method

Abstract

Acartia and Paracartia species, often known to co-occur, can exhibit complex life cycles, including the production of resting eggs. Studying and understanding their population dynamics is hindered by the inability to identify eggs and early developmental stages using morphological techniques. We have developed a simple molecular technique to distinguish between the three species of the Acartiidae family (Acartia clausi, A. discaudata and Paracartia grani) that co-occur in the Thau lagoon (43°25′N; 03°40′E) in southern France. Direct amplification of a partial region of the mitochondrial cytochrome oxidase I gene by polymerase chain reaction and subsequent restriction fragment length polymorphism results in a unique restriction profile for each species. The technique is capable of determining the identity of individual eggs, including resting eggs retrieved from sediment samples, illustrating its application in facilitating population dynamic studies of this ubiquitous and important member of the zooplankton community.

References

  1. Belmonte G (1998) The egg morphology of 7 Acartiidae species: a preliminary survey of the taxonomy of calanoids. J Mar Syst 15:35–39CrossRefGoogle Scholar
  2. Blanco-Bercial L, Álvarez-Marqués F (2007) RFLP procedure to discriminate between Clausocalanus Giesbrecht, 1888 (Copepoda, Calanoida) species in the Central Cantabrian Sea. J Exp Mar Biol Ecol 344:73–77CrossRefGoogle Scholar
  3. Boyer S, Arzul I, Bonnet D (2012) Some like it hot: Paracartia grani (Copepoda: Calanoida) arrival in the Thau lagoon (South of France- Mediterranean Sea). Marine biodiversity records 5: available at http://dx.doi.org/10.1017/S1755267212000565
  4. Boyer S, Bouvy M, Bonnet D (submitted) What triggers Acartia species egg production in a Mediterranean lagoon? Estuar Coast Shelf SciGoogle Scholar
  5. Bucklin A, Bentley M, Franzen S (1998) Distribution and relative abundance of Pseudocalanus moultoni and P. newmani (Copepoda: Calanoida) on Georges Bank using molecular identification of sibling species. Mar Biol 132:97–106CrossRefGoogle Scholar
  6. Bucklin A, Guarnieri M, Hill R, Bentley A, Kaartvedt S (1999) Taxonomic and systematic assessment of planktonic copepods using mitochondrial COI sequence variation and competitive, species-specific PCR. Hydrobiologia 401:239–254CrossRefGoogle Scholar
  7. Bucklin A, Hopcroft R, Kosobokova K, Nigro L, Ortman B, Jennings R, Sweetman C (2010) DNA barcoding of Arctic Ocean holozooplankton for species identification and recognition. Deep Sea Res Part II Top Stud Oceanogr 57(1–2):40–48CrossRefGoogle Scholar
  8. Fatemi M (1938) Les variations saisonnières du plancton de l’Etang de Thau à l’embouchure du canal de Sète. PhD Thesis Université Montpellier 2, France, p 97Google Scholar
  9. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3(5):294–299Google Scholar
  10. Grabbert S, Renz J, Hirche H-J, Bucklin A (2010) Species-specific PCR discrimination of species of the calanoid copepod Pseudocalanus, P. acuspes and P. elongatus, in the Baltic and North Seas. Hydrobiologia 652(1):289–297CrossRefGoogle Scholar
  11. Guerrero F, Rodríguez V (1998) Existence and significance of Acartia grani resting eggs (Copepoda: Calanoida) in sediments of a coastal station in the Alboran Sea (SE Spain). J Plankton Res 20(2):305–314CrossRefGoogle Scholar
  12. Hill RS, Allen LD, Bucklin A (2001) Multiplexed species-specific PCR protocol to discriminate four N.Atlantic Calanus species, with an mtCOI gene tree for ten Calanus species. Mar Biol 139:279–287CrossRefGoogle Scholar
  13. Kasahara S, Uye S, Onbé T (1974) Calanoid copepod eggs in Sea-Bottom Muds. Mar Biol 26:167–171CrossRefGoogle Scholar
  14. Lam Haoi T (1985) Evolution saisonnière du zooplancton dans trois sites peu profonds de Thau, une lagune Nord-Méditerranéenne. Hydrobiologia 128:161–174CrossRefGoogle Scholar
  15. Lindeque PK, Harris RP, Jones MB, Smerdon GR (1999) Simple molecular method to distinguish the identity of Calanus species (Copepoda: Calanoida) at any developmental stage. Mar Biol 133:91–96CrossRefGoogle Scholar
  16. Marcus NH (1990) Calanoid copepod, cladocerans, and rotifer eggs in sea-bottom sediments of northern California coastal waters: identification, occurrence and hatching. Mar Biol 105:413–418CrossRefGoogle Scholar
  17. Mauchline J (1998) The biology of calanoid copepods. Adv Mar Biol 33:1–707CrossRefGoogle Scholar
  18. Onbé T (1978) Sugar flotation method for sorting the resting eggs of marine cladocerans and copepods from sea-bottom sediment. Bull Jpn Soc Sci Fish 44(12):1411Google Scholar
  19. Tritle D (2006) Activity of Promega Restriction Enzymes in GoTaq® Green and PCR Master Mixes. Promega Corporation Web site. http://www.promega.com/resources/articles/pubhub/enotes/activity-of-promega-restriction-enzymes-in-gotaq-green-and-pcr-master-mixes/ Updated 2006. Accessed 11th Jan 2012
  20. Vincze T, Posfai J, Roberts RJ (2003) NEBcutter: a program to cleave DNA with restriction enzymes. Nucleic Acids Res 31:3688–3691CrossRefGoogle Scholar
  21. Webb K, Barnes D, Clark M, Bowden D (2006) DNA barcoding: a molecular tool to identify Antarctic marine larvae. Deep Sea Res Part II-Top Stud Oceanogr 53(8–10):1053–1060CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Plymouth Marine LaboratoryPlymouthUK
  2. 2.Laboratoire EcoSym (Ecologie des Systèmes Marins Côtiers), UMR5119Université Montpellier 2Montpellier, Cedex 05France

Personalised recommendations