Marine Biology

, Volume 160, Issue 2, pp 479–490 | Cite as

Identifying trophic variation in a marine suspension feeder: DNA- and stable isotope-based dietary analysis in Mytilus spp.

  • Aaron P. Maloy
  • Peter Nelle
  • Sarah C. Culloty
  • John W. Slater
  • Chris Harrod
Original Paper


Accurate field data on trophic interactions for suspension feeders are lacking, and new approaches to dietary analysis are necessary. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) was integrated with stable isotope analysis to examine dietary patterns in suspension-feeding Mytilus spp. from seven spatially discrete locations within a semi-enclosed marine bay (Strangford Lough, Northern Ireland) during June 2009. Results of the two methods were highly correlated, reflecting dietary variation in a similar manner. Variation in PCR-DGGE data was more strongly correlated with the principal environmental gradient (distance from the opening to the Irish Sea), while values of δ 13C and δ 15N became progressively enriched, suggesting a greater dependence on animal tissue and benthic microalgae. Diatoms and crustaceans were the most frequently observed phylotypes identified by sequencing, but specific DNA results provided little support for the trophic trends observed in the stable isotope data. This combined approach offers an increased level of trophic insight for suspension feeders and could be applied to other organisms.


Stable Isotope Bivalve Stable Isotope Ratio Shell Height Suspension Feeder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank S. Gallagher for reading early drafts of the manuscript, and the staff of CAMBio for their assistance and laboratory support. This work was supported by a Higher Education Authority of Ireland Strand III grant awarded to J.W.S. P.N. was supported through a Kurt Hansen Scholarship from the Bayer Science and Education Foundation.

Supplementary material

227_2012_2105_MOESM1_ESM.docx (101 kb)
Supplementary material 1 (DOCX 101 kb)


  1. Allan EL, Ambrose ST, Richoux NB, Froneman PW (2010) Determining spatial changes in the diet of nearshore suspension-feeders along the South African coastline: stable isotope and fatty acid signatures. Estuar Coast Shelf Sci 87:463–471. doi: 10.1016/j.ecss.2010.02.004 CrossRefGoogle Scholar
  2. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefGoogle Scholar
  3. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA + for PRIMER: Guide to software and statistical methods. PRIMER-E, PlymouthGoogle Scholar
  4. Blankenship LE, Yayanos AA (2005) Universal primers and PCR of gut contents to study marine invertebrate diets. Mol Ecol 14:891–899CrossRefGoogle Scholar
  5. Bolnick DI, Svanback R, Fordyce JA, Yang LH, Davis JM, Hulsey CD, Forister ML (2003) The ecology of individuals: incidence and implications of individual specialization. Am Nat 161:1–28CrossRefGoogle Scholar
  6. Cabana G, Rasmussen JB (1996) Comparison of aquatic food chains using nitrogen isotopes. Proc Natl Acad Sci USA 93:10844–10847CrossRefGoogle Scholar
  7. Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, PlymouthGoogle Scholar
  8. Dame R (1996) Ecology of marine bivalves: an ecosystem approach. Florida, Boca RatonCrossRefGoogle Scholar
  9. Davenport J, Smith R, Packer M (2000) Mussels Mytilus edulis: significant consumers and destroyers of mesozooplankton. Mar Ecol Prog Ser 198:131–137CrossRefGoogle Scholar
  10. Decottignies P, Beninger PG, Rince Y, Riera P (2007) Trophic interactions between two introduced suspension-feeders, Crepidula fornicata and Crassostrea gigas, are influenced by seasonal effects and qualitative selection capacity. J Exp Mar Biol Ecol 342:231–241. doi: 10.1016/j.jembe.2006.10.005 CrossRefGoogle Scholar
  11. Dias PJ, Dordor A, Tulett D, Piertney S, Davies IM, Snow M (2009) Survey of mussel (Mytilus) species at Scottish shellfish farms. Aquac Res 40:1715–1722. doi: 10.1111/j.1365-2109.2009.02274.x CrossRefGoogle Scholar
  12. Drummond AJ, Ashton B, Cheung M, Heled J, Kearse M, Moir R, Stones-Havas S, Thiere T, Wilson A (2009) Geneious v5.0.4, Available from
  13. Dubois S, Orvain F, Marin-Leal JC, Ropert M, Lefebvre S (2007) Small-scale spatial variability of food partitioning between cultivated oysters and associated suspension-feeding species, as revealed by stable isotopes. Mar Ecol Prog Ser 336:151–160CrossRefGoogle Scholar
  14. Erwin DG (1986) Strangford Lough benthos and the marine community concept. PhD dissertation, Queen’s University BelfastGoogle Scholar
  15. Ezgeta-Balić D, Najdek M, Peharda M, Blažina M (2012) Seasonal fatty acid profile analysis to trace origin of food sources of four commercially important bivalves. Aquaculture 334–337:89–100. doi: 10.1016/j.aquaculture.2011.12.041 CrossRefGoogle Scholar
  16. Fertig B, Carruthers TJB, Dennison WC, Fertig EJ, Altabet MA (2010) Eastern oyster (Crassostrea virginica) delta N-15 as a bioindicator of nitrogen sources: observations and modeling. Mar Pollut Bull 60:1288–1298. doi: 10.1016/j.marpolbul.2010.03.013 CrossRefGoogle Scholar
  17. Fischer SG, Lerman LS (1983) DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc Natl Acad Sci USA 80:1579–1583CrossRefGoogle Scholar
  18. France RL (1995) C-13 enriched in benthic compared to planktonic algae: foodweb implications. Mar Ecol Prog Ser 124:307–312. doi: 10.3354/meps124307 CrossRefGoogle Scholar
  19. Fry B (2006) Stable isotope ecology. NY, New YorkCrossRefGoogle Scholar
  20. Fukumori K, Oi M, Doi H, Takahashi D, Okuda N, Miller TW, Kuwae M, Miyasaka H, Genkai-Kato M, Koizumi Y, Omori K, Takeoka H (2008) Bivalve tissue as a carbon and nitrogen isotope baseline indicator in coastal ecosystems. Estuar Coast Shelf Sci 79:45–50. doi: 10.1016/j.ecss.2008.03.004 CrossRefGoogle Scholar
  21. Galtsoff PS (1964) The American Oyster Crassostrea virginica Gmelin. Fish Bull US Fish Wildlife Ser 64:1–456Google Scholar
  22. Gast RJ, Dennett MR, Caron DA (2004) Characterization of protistan assemblages in the Ross Sea, Antarctica, by denaturing gradient gel electrophoresis. Appl Environ Microbiol 70:2028–2037. doi: 10.1128/aem.70.4.2028-2037.2004 CrossRefGoogle Scholar
  23. Gosling E, Doherty S, Howley N (2008) Genetic characterization of hybrid mussel (Mytilus) populations on Irish coasts. J Mar Biol Assoc UK 88:341–346CrossRefGoogle Scholar
  24. Hardy CM, Krull ES, Hartley DM, Oliver RL (2010) Carbon source accounting for fish using combined DNA and stable isotope analyses in a regulated lowland river weir pool. Mol Ecol 19:197–212. doi: 10.1111/j.1365-294X.2009.04411.x CrossRefGoogle Scholar
  25. Jarman SN, Gales NJ, Tierney M, Gill PC, Elliott NG (2002) A DNA-based method for identification of krill species and its application to analysing the diet of marine vertebrate predators. Mol Ecol 11:2679–2690. doi: 10.1046/j.1365-294X.2002.01641.x CrossRefGoogle Scholar
  26. Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386CrossRefGoogle Scholar
  27. Kanagawa T (2003) Bias and artifacts in multitemplate polymerase chain reactions (PCR). J Biosci Bioeng 96:317–323. doi: 10.1263/jbb.96.317 Google Scholar
  28. Kang CK, Lee YW, Choy EJ, Shin JK, Seo IS, Hong JS (2006) Microphytobenthos seasonality determines growth and reproduction in intertidal bivalves. Mar Ecol Prog Ser 315:113–127CrossRefGoogle Scholar
  29. King RA, Vaughan IP, Bell JR, Bohan DA, Symondson WOC (2010) Prey choice by carabid beetles feeding on an earthworm community analysed using species- and lineage-specific PCR primers. Mol Ecol 19:1721–1732. doi: 10.1111/j.1365-294X.2010.04602.x CrossRefGoogle Scholar
  30. Leal JCM, Dubois S, Orvain F, Galois R, Blin JL, Ropert M, Bataille MP, Ourry A, Lefebvre S (2008) Stable isotopes (delta C-13, delta N-15) and modelling as tools to estimate the trophic ecology of cultivated oysters in two contrasting environments. Mar Biol 153:673–688. doi: 10.1007/s00227-007-0841-7 CrossRefGoogle Scholar
  31. Lefebvre S, Leal JCM, Dubois S, Orvain F, Blin JL, Bataille MP, Ourry A, Galois R (2009) Seasonal dynamics of trophic relationships among co-occurring suspension-feeders in two shellfish culture dominated ecosystems. Estuar Coast Shelf Sci 82:415–425. doi: 10.1016/j.ecss.2009.02.002 CrossRefGoogle Scholar
  32. Lehane C, Davenport J (2006) A 15-month study of zooplankton ingestion by farmed mussels (Mytilus edulis) in Bantry Bay, Southwest Ireland. Estuar Coast Shelf Sci 67:645–652CrossRefGoogle Scholar
  33. Lotsy JP (1895) The food of the oyster, clam, and ribbed mussel. Rept US Comm Fish 1893(19):375Google Scholar
  34. Magorrian BH, Service M, Clarke W (1995) An acoustic bottom classification survey of Strangford Lough, Northern Ireland. J Mar Biol Assoc UK 75:987–992CrossRefGoogle Scholar
  35. Mallela J, Harrod C (2008) delta C-13 and delta N-15 reveal significant differences in the coastal foodwebs of the seas surrounding Trinidad and Tobago. Mar Ecol Prog Ser 368:41–51. doi: 10.3354/meps07589 CrossRefGoogle Scholar
  36. Maloy AP, Culloty SC, Slater JW (2009) Use of PCR-DGGE to investigate the trophic ecology of marine suspension feeding bivalves. Mar Ecol Prog Ser 381:109–118. doi: 10.3354/meps07959 CrossRefGoogle Scholar
  37. Malvarez GC, Cooper JAG, Jackson DWT (2001) Relationships between wave-induced currents and sediment grain size on a sandy tidal-flat. J Sediment Res 71:705–712. doi: 10.1306/2dc40961-0e47-11d7-8643000102c1865d CrossRefGoogle Scholar
  38. McCutchan JH, Lewis WM, Kendall C, McGrath CC (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378–390CrossRefGoogle Scholar
  39. Peterson BJ (1999) Stable isotopes as tracers of organic matter input and transfer in benthic food webs: a review. Acta Oecol 20:479–487CrossRefGoogle Scholar
  40. Phillips DL, Gregg JW (2003) Source partitioning using stable isotopes: coping with too many sources. Oecologia 136:261–269. doi: 10.1007/s00442-003-1218-3 CrossRefGoogle Scholar
  41. Portig AA, Mathers RG, Montgomery WI, Govier RN (1994) The distribution and utilization of Zostera species in Strangford Lough, Northern Ireland. Aquat Bot 47:317–328. doi: 10.1016/0304-3770(94)90061-2 CrossRefGoogle Scholar
  42. Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718CrossRefGoogle Scholar
  43. Riera P, Stal LJ, Nieuwenhuize J (2002) Delta C-13 versus delta N-15 of co-occurring molluscs within a community dominated by Crassostrea gigas and Crepidula fornicata (Oosterschelde, The Netherlands). Mar Ecol Prog Ser 240:291–295. doi: 10.3354/meps240291 CrossRefGoogle Scholar
  44. Sauriau PG, Kang CK (2000) Stable isotope evidence of benthic microalgae-based growth and secondary production in the suspension feeder Cerastoderma edule (Mollusca, Bivalvia) in the Marennes-Oleron Bay. Hydrobiologia 440:317–329CrossRefGoogle Scholar
  45. West JB, Bowen GJ, Cerling TE, Ehleringer JR (2006) Stable isotopes as one of nature’s ecological recorders. Trends Ecol Evol 21:408–414CrossRefGoogle Scholar
  46. Yokoyama H, Tamaki A, Harada K, Shimoda K, Koyama K, Ishihi Y (2005a) Variability of diet-tissue isotopic fractionation in estuarine macrobenthos. Mar Ecol Prog Ser 296:115–128CrossRefGoogle Scholar
  47. Yokoyama H, Tamaki A, Koyama K, Ishihi Y, Shimoda K, Harada K (2005b) Isotopic evidence for phytoplankton as a major food source for macrobenthos on an intertidal sandflat in Ariake Sound, Japan. Mar Ecol Prog Ser 304:101–116CrossRefGoogle Scholar
  48. Zhu F, Massana R, Not F, Marie D, Vaulot D (2005) Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol Ecol 52:79–92. doi: 10.1016/j.femsec.2004.10.006 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Aaron P. Maloy
    • 1
    • 2
  • Peter Nelle
    • 3
    • 4
  • Sarah C. Culloty
    • 1
  • John W. Slater
    • 2
  • Chris Harrod
    • 3
    • 5
  1. 1.Aquaculture and Fisheries Development Centre, School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
  2. 2.Centre of Applied Marine Biotechnology (CAMBio)Letterkenny Institute of TechnologyLetterkennyIreland
  3. 3.School of Biological SciencesQueen’s University of BelfastBelfastUK
  4. 4.Zentrum für Didaktik der Biologie, WestfälischeWilhelms-Universität MünsterMünsterGermany
  5. 5.Instituto de Investigaciones OceanológicasUniversidad de AntofagastaAntofagastaChile

Personalised recommendations