Marine Biology

, Volume 160, Issue 8, pp 2113–2128 | Cite as

Structural and functional vulnerability to elevated pCO2 in marine benthic communities

Original Paper


The effect of elevated pCO2/low pH on marine invertebrate benthic biodiversity, community structure and selected functional responses which underpin ecosystem services (such as community production and calcification) was tested in a medium-term (30 days) mesocosm experiment in June 2010. Standardised intertidal macrobenthic communities, collected (50.3567°N, 4.1277°W) using artificial substrate units (ASUs), were exposed to one of seven pH treatments (8.05, 7.8. 7.6, 7.4, 7.2, 6.8 and 6.0). Community net calcification/dissolution rates, as well as changes in biomass, community structure and diversity, were measured at the end of the experimental period. Communities showed significant changes in structure and reduced diversity in response to reduced pH: shifting from a community dominated by calcareous organisms to one dominated by non-calcareous organisms around either pH 7.2 (number of individuals and species) or pH 7.8 (biomass). These results were supported by a reduced total weight of CaCO3 structures in all major taxa at lowered pH and a switch from net calcification to net dissolution around pH 7.4 (Ωcalc = 0.78, Ωara = 0.5). Overall community soft tissue biomass did not change with pH and high mortality was observed only at pH 6.0, although molluscs and arthropods showed significant decreases in soft tissue. This study supports and refines previous findings on how elevated pCO2 can induce changes in marine biodiversity, underlined by differential vulnerability of different phyla. In addition, it shows significant elevated pCO2-/low pH-dependent changes in fundamental community functional responses underpinning changes in ecosystem services.



This work is a contribution to the “European Project on Ocean Acidification” (EPOCA), which received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 211384. We thank Amanda Beesley, Helen Findlay, Rob Ellis, Sarah Dashfield and Rachel Hale for their help. This work was undertaken whilst PC was in receipt of a RCUK Fellowship to investigate ocean acidification.

Supplementary material

227_2012_2097_MOESM1_ESM.doc (27 kb)
Supplementary material 1 (DOC 27 kb)
227_2012_2097_MOESM2_ESM.docx (86 kb)
Supplementary material 2 (DOCX 85 kb)
227_2012_2097_MOESM3_ESM.docx (99 kb)
Supplementary material 3 (DOCX 98 kb)


  1. Agnew DJ, Taylor AC (1986) Seasonal and diel variations of some physico-chemical parameters of boulder shore habitats. Ophelia 25(2):83–95CrossRefGoogle Scholar
  2. Barry JP, Buck KR, Lovera CF et al (2004) Effects of direct ocean CO2 injection on deep-sea meiofauna. J Oceanogr 60(4):759–766. doi: 10.1007/s10872-004-5768-8 CrossRefGoogle Scholar
  3. Beesley A, Lowe DM, Pascoe CK, Widdicombe S (2008) Effects of CO2-induced seawater acidification on the health of Mytilus edulis. Clim Res 37:215–225. doi: 10.3354/cr00765 CrossRefGoogle Scholar
  4. Beniash E, Ivanina A, Lieb NS, Kurochkin I, Sokolova IM (2010) Elevated level of carbon dioxide affects metabolism and shell formation in oysters Crassostrea virginica. Mar Ecol Prog Ser 419:95–108. doi: 10.3354/meps08841 CrossRefGoogle Scholar
  5. Bibby R, Widdicombe S, Parry H, Spicer J, Pipe R (2008) Effects of ocean acidification on the immune response of the blue mussel Mytilus edulis. Aquat Biol 2:67–74. doi: 10.3354/ab00037 CrossRefGoogle Scholar
  6. Blackford J, Jones N, Proctor R, Holt J, Widdicombe S, Lowe D, Rees A (2009) An initial assessment of the potential environmental impact of CO2 escape from marine carbon capture and storage systems. Proc Inst Mech Eng Part A J Power Energy 223:269–280. doi: 10.1243/09576509jpe623 CrossRefGoogle Scholar
  7. Bulling MT, Hicks N, Murray L, Paterson DM, Raffaelli D, White PCL, Solan M (2010) Marine biodiversity-ecosystem functions under uncertain environmental futures. Philos Trans R Soc B Biol Sci 365:2107–2116. doi: 10.1098/rstb.2010.0022 CrossRefGoogle Scholar
  8. Byrne M (2012) Global change ecotoxicology: identification of early life history bottlenecks in marine invertebrates, variable species responses and variable experimental approaches. Mar Environ Res 76(SI):3–15. doi: 10.1016/j.marenvres.2011.10.004 CrossRefGoogle Scholar
  9. Byrne M, Ho M, Wong E, Soars NA, Selvakumaraswamy P, Shepard-Brennand H, Dworjanyn SA, Davis AR (2011) Unshelled abalone and corrupted urchins: development of marine calcifiers in a changing ocean. Proc R Soc B Biol Sci 278:2376–2383. doi: 10.1098/rspb.2010.2404 CrossRefGoogle Scholar
  10. Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365. doi: 10.1038/425365a CrossRefGoogle Scholar
  11. Calosi P, Rastrick SPS, Graziano M, Thomas SC, Baggini C, Carter HA, Hall-Spencer JM, Milazzo M, Spicer JI Acid-base and ion-regulation capacity-dependent distribution of sea urchins living near shallow water CO2 vents. Mar Pollut Bull special issue on CCS and CO2 Vents (accepted)Google Scholar
  12. Chakravarti IM, Laha RG, Roy J (1967) Handbook of methods of applied statistics, vol I. Wiley, New YorkGoogle Scholar
  13. Chan KYK, Gruenbaum D, O’Donnell MJ (2011) Effects of ocean-acidification-induced morphological changes on larval swimming and feeding. J Exp Biol 214:3857–3867. doi: 10.1242/jeb.054809 CrossRefGoogle Scholar
  14. Chisholm JRM, Gattuso JP (1991) Validation of the alkalinity anomaly technique for investigating calcification and photosynthesis in coral-reef communities. Limnol Oceanogr 36:1232–1239CrossRefGoogle Scholar
  15. Cigliano MC, Gambi R, Rodolfo-Metalpa R, Patti FP, Hall-Spencer JM (2010) Effects of ocean acidification on invertebrate settlement at volcanic CO2 vents. Mar Biol 157:2489–2502. doi: 10.1007/s00227-010-1513-6 CrossRefGoogle Scholar
  16. Clarke KR, Gorley RN (2006) PRIMER v6: User manual/Tutorial. PRIMER-E, PlymouthGoogle Scholar
  17. Clarke KR, Green RH (1988) Statistical design and analysis for a biological effects study. Mar Ecol Prog Ser 46:213–226. doi: 10.3354/meps046213 CrossRefGoogle Scholar
  18. Collins S, Bell G (2004) Phenotypic consequences of 1,000 generations of selection at elevated CO2 in a green alga. Nature 431(7008):566–569. doi: 10.1038/nature02945 CrossRefGoogle Scholar
  19. Cummings V, Hewitt J, Van Rooyen A, Currie K, Beard S, Thrush S, Norkko J, Barr N, Heath P, Halliday NJ, Sedcole R, Gomez A, McGraw C, Metcalf V (2011) Ocean acidification at high latitudes: potential effects on functioning of the antarctic bivalve Laternula elliptica. PLoS One 6(1):e16069. doi: 10.1371/journal.pone.0016069 CrossRefGoogle Scholar
  20. De la Haye KL, Spicer JI, Widdicombe S, Briffa M (2011) Reduced sea water pH disrupts resource assessment and decision making in the hermit crab Pagurus bernhardus. Anim Behav 82:495–501. doi: 10.1016/j.anbehav.2011.05.030 CrossRefGoogle Scholar
  21. Dickson AG (1990) Standard potential of the reaction—AgCl(S) + 1/2H-2(g) = Ag(S) + HCl(AQ) and the standard acidity constant of the ion HSO4− in synthetic sea-water from 273.15-K to 318.15-K. J Chem Thermodyn 22:113–127. doi: 10.1016/0021-9614(90)90074-z CrossRefGoogle Scholar
  22. Dickson AG, Millero FJ (1987) A comparison of the equilibrium-constants for the dissociation of carbonic-acid in seawater media. Deep-Sea Res Part A Oceanogr Res Pap 34:1733–1743. doi: 10.1016/0198-0149(87)90021-5 CrossRefGoogle Scholar
  23. Dissanayake A, Clough R, Spicer JI, Jones MB (2010) Effects of hypercapnia on acid-base balance and osmo-/iono-regulation in prawns (Decapoda: Palaemonidae). Aquat Biol 11(1):27–36. doi: 10.3354/ab00285 CrossRefGoogle Scholar
  24. Donohue P, Calosi P, Bates AH, Laverock B, Rastrick S, Mark FC, Strobel A, Wiccicombe S (2012) Physiological and behavioural impacts of exposure to elevated pCO2 on an important ecosystem engineer, the burrowing shrimp Upogebia deltaura. Aquat Biol 15(1):73–86. doi: 10.3354/ab00408 CrossRefGoogle Scholar
  25. Dupont S, Havenhand J, Thorndyke W, Peck L, Thorndyke M (2008) Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis. Mar Ecol Prog Ser 373:285–294. doi: 10.3354/meps07800 CrossRefGoogle Scholar
  26. Dupont S, Dorey N, Stumpp M, Melzner F, Thorndyke M (2012) Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus Droebachiensis. Mar Biol. doi:  10.1007/s00227-012-1921-x
  27. Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432. doi: 10.1093/icesjms/fsn048 CrossRefGoogle Scholar
  28. Feng Y, Hare CE, Leblanc K, Rose JM, Zhang Y, DiTullio GR, Lee PA, Wilhelm SW, Rowe JM, Sun J, Nemcek N, Gueguen C, Passow U, Benner I, Brown C, Hutchins DA (2009) Effects of increased pCO2 and temperature on the North Atlantic spring bloom. I. The phytoplankton community and biogeochemical response. Mar Ecol Prog Ser 388:13–25. doi: 10.3354/meps08133 CrossRefGoogle Scholar
  29. Ferrari MCO, Dixson DL, Munday PL, McCormick MI, Meekan MG, Sih A, Chivers DP (2011) Intrageneric variation in antipredator responses of coral reef fishes affected by ocean acidification: implications for climate change projections on marine communities. Glob Change Biol 17:2980–2986. doi: 10.1111/j.1365-2486.2011.02439.x CrossRefGoogle Scholar
  30. Findlay HS, Wood HL, Kendall MA, Spicer JI, Twitchett RJ, Widdicombe S (2009) Calcification, a physiological process to be considered in the context of the whole organism. Biogeosci Discuss 6:2267–2284. doi: 10.5194/bgd-6-2267-2009 CrossRefGoogle Scholar
  31. Findlay HS, Calosi P, Crawfurd K (2011a) Determinants of the PIC:POC response in the coccolithophore Emiliania huxleyi under future ocean acidification scenarios. Limnol Oceanogr 56:1168–1178. doi: 10.4319/lo.2011.56.3.1168 CrossRefGoogle Scholar
  32. Findlay HS, Wood HL, Kendall MA, Spicer JI, Twitchett RJ, Widdicombe S (2011b) Comparing the impact of high CO2 on calcium carbonate structures in different marine organisms. Mar Biol Res 7:565–575CrossRefGoogle Scholar
  33. Gattuso JP, Frankignoulle M, Smith SV (1999) Measurement of community metabolism and significance in the coral reef CO2 source-sink debate. Proc Natl Acad Sci USA 96:13017–13022. doi: 10.1073/pnas.96.23.13017 CrossRefGoogle Scholar
  34. Gaylord B, Hill TM, Sanford E, Lenz EA, Jacobs LA, Sato KN, Russell AD, Hettinger A (2011) Functional impacts of ocean acidification in an ecologically critical foundation species. J Exp Biol 214:2586–2594. doi: 10.1242/jeb.055939 CrossRefGoogle Scholar
  35. Gazeau F, Quiblier C, Jansen JM, Gattuso J-P, Middelburg JJ, Heip CHR (2007) Impact of elevated CO2 on shellfish calcification. Geophys Res Lett 34(7):L07603. doi: 10.1029/2006gl028554 CrossRefGoogle Scholar
  36. Gollety C, Gentil F, Davoult D (2008) Secondary production, calcification and CO2 fluxes in the cirripedes Chthamalus montagui and Elminius modestus. Oecologia 155:133–142. doi: 10.1007/s00442-007-0895-8 CrossRefGoogle Scholar
  37. Gutowska MA, Melzner F, Poertner HO, Meier S (2010) Cuttlebone calcification increases during exposure to elevated seawater pCO2 in the cephalopod Sepia officinalis. Mar Biol 157:1653–1663. doi: 10.1007/s00227-010-1438-0 CrossRefGoogle Scholar
  38. Hale R, Calosi P, McNeill L, Mieszkowska N, Widdicombe S (2011) Predicted levels of future ocean acidification and temperature rise could alter community structure and biodiversity in marine benthic communities. Oikos 120:661–674. doi: 10.1111/j.1600-0706.2010.19469.x CrossRefGoogle Scholar
  39. Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner SM, Rowley SJ, Tedesco D, Buia M-C (2008) Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454:96–99. doi: 10.1038/nature07051 CrossRefGoogle Scholar
  40. Hawkins SJ, Moore PJ, Burrows MT, Poloczanska E, Mieszkowska N, Herbert RJH, Jenkins SR, Thompson RC, Genner MJ, Southward AJ (2008) Complex interactions in a rapidly changing world: responses of rocky shore communities to recent climate change. Clim Res 37:123–133. doi: 10.3354/cr00768 CrossRefGoogle Scholar
  41. Hendriks IE, Duarte CM, Alvarez M (2010) Vulnerability of marine biodiversity to ocean acidification: a meta-analysis. Estuar Coast Shelf Sci 86:157–164. doi: 10.1016/j.ecss.2009.11.022 CrossRefGoogle Scholar
  42. IAP Statement on Ocean Acidification (2009) J Int Wildl Law Policy 12(3):210–215. doi: 10.1080/13880290903199391 CrossRefGoogle Scholar
  43. Iglesias-Rodriguez MD, Halloran PR, Rickaby REM et al (2008) Phytoplankton calcification in a high CO2 world. Science 320:336–340. doi: 10.1126/science.1154122 CrossRefGoogle Scholar
  44. IPCC (2007) Climate Change 2007: The physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 996Google Scholar
  45. Kleypas JA, Feely RA, Fabry VJ, Langdon C, Sabine CL, Robbins LL (2006) Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research, report of a workshop held 18–20 April 2005, St. Petersburg, FL, sponsored by NSF, NOAA, and the US Geological Survey, p 88Google Scholar
  46. Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13:1419–1434. doi: 10.1111/j.1461-0248.2010.01518.x CrossRefGoogle Scholar
  47. Kroeker KJ, Micheli F, Gambi MC, Martz TR (2011) Divergent ecosystem responses within a benthic marine community to ocean acidification. Proc Natl Acad Sci USA 108:14515–14520. doi: 10.1073/pnas.1107789108 CrossRefGoogle Scholar
  48. Kroeker KJ, Micheli F, Gambi MC (2012) Ocean acidification causes ecosystem shifts via altered competitive interactions. Nat Clim Change. doi: 10.1038/NCLIMATE1680 Google Scholar
  49. Levene H (1960) Robust tests for equality of variances. In: Olkin I et al (eds) Contributions to probability and statistics: essays in honor of Harold Hotelling. Stanford University Press, Palo Alto, pp 278–292Google Scholar
  50. Lohbeck KT, Riebesell U, Reusch TBH (2012) Adaptive evolution of a key phytoplankton species to ocean acidification. Nat Geosci 5:346–351. doi: 10.1038/NGEO1441 CrossRefGoogle Scholar
  51. Martin S, Rodolfo-Metalpa R, Ransome E, Rowley S, Buia M-C, Gattuso J-P, Hall-Spencer J (2008) Effects of naturally acidified seawater on seagrass calcareous epibionts. Biol Lett 4:689–692. doi: 10.1098/rsbl.2008.0412 CrossRefGoogle Scholar
  52. Medina MH, Correa JA, Barata C (2007) Micro-evolution due to pollution: possible consequences for ecosystem responses to toxic stress. Chemosphere 67:2105–2114. doi: 10.1016/j.chemosphere.2006.12.024 CrossRefGoogle Scholar
  53. Mehrbach C, Culberso CH, Hawley JE, Pytkowic RM (1973) Measurement of apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18(6):897–907CrossRefGoogle Scholar
  54. Melatunan S, Calosi P, Rundle SD, Widdicombe S, Moody AJ Marine gastropod shell plastic responses to the combined effects of ocean acidification and elevated temperature. Mar Ecol Prog Ser (accepted)Google Scholar
  55. Melatunan S, Calosi P, Rundle SD, Moody AJ, Widdicombe S (2011) Exposure to elevated temperature and pCO2 reduces respiration rate and energy status in the periwinkle Littorina littorea. Physiol Biochem Zool 84:583–594. doi: 10.1086/662680 CrossRefGoogle Scholar
  56. Melzner F, Gutowska MA, Langenbuch M, Dupont S, Lucassen M, Thorndyke MC, Bleich M, Portner HO (2009) Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences 6:2313–2331CrossRefGoogle Scholar
  57. Michaelidis B, Ouzounis C, Paleras A, Pörtner HO (2005) Effects of long-term moderate hypercapnia on acid-base balance and growth rate in marine mussels Mytilus galloprovincialis. Mar Ecol Prog Ser 293:109–118. doi: 10.3354/meps293109 CrossRefGoogle Scholar
  58. Miles H, Widdicombe S, Spicer JI, Hall-Spencer J (2007) Effects of anthropogenic seawater acidification on acid-base balance in the sea urchin Psammechinus miliaris. Mar Pollut Bull 54:89–96. doi: 10.1016/j.marpolbul.2006.09.021 CrossRefGoogle Scholar
  59. Munday PL, Donelson JM, Dixson DL, Endo GGK (2009) Effects of ocean acidification on the early life history of a tropical marine fish. Proc R Soc B Biol Sci 276:3275–3283. doi: 10.1098/rspb.2009.0784 CrossRefGoogle Scholar
  60. Norderhaug KM, Christie H, Rinde E (2002) Colonisation of kelp imitations by epiphyte and holdfast fauna, a study of mobility patterns. Mar Biol 141:965–973. doi: 10.1007/s00227-002-0893-7 CrossRefGoogle Scholar
  61. Parker LM, Ross PM, O’Connor WA (2010) Comparing the effect of elevated pCO2 and temperature on the fertilization and early development of two species of oysters. Mar Biol 157:2435–2452. doi: 10.1007/s00227-010-1508-3 CrossRefGoogle Scholar
  62. Pielou EC (1975) Ecological diversity. Wiley, New YorkGoogle Scholar
  63. Pierrot D, Lewis E, Wallace DWR (2006) Co2sys Dos Program Developed for CO2 System Calculations. ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak RidgeGoogle Scholar
  64. Pistevos JCA, Calosi P, Widdicombe S, Bishop JDD (2011) Will variation among genetic individuals influence species responses to global climate change? Oikos 120:675–689. doi: 10.1111/j.1600-0706.2010.19470.x CrossRefGoogle Scholar
  65. Pörtner H-O (2008) Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Mar Ecol Prog Ser 373:203–217. doi: 10.3354/meps07768 CrossRefGoogle Scholar
  66. Pörtner HO, Bock C, Reipschläger A (2000) Modulation of the cost of pHi regulation during metabolic depression: a (31)P-NMR study in invertebrate (Sipunculus nudus) isolated muscle. J Exp Biol 203:2417–2428Google Scholar
  67. Reipschläger A, Pörtner HO (1996) Metabolic depression during environmental stress: the role of extracellular versus intracellular pH in Sipunculus nudus. J Exp Biol 199:1801–1807Google Scholar
  68. Riebesell U, Bellerby RGJ, Grossart HP, Thingstad F (2008) Mesocosm CO2 perturbation studies: from organism to community level. Biogeosciences 5:1157–1164CrossRefGoogle Scholar
  69. Riebesell U, Fabry VJ, Hansson L, Gattuso J-P (eds) (2010) Guide to best practices for ocean acidification research and data reporting. Publications Office of the European Union, Luxembourg, p 260Google Scholar
  70. Ries JB, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37:1131–1134. doi: 10.1130/g30210a.1 CrossRefGoogle Scholar
  71. Rodolfo-Metalpa R, Houlbreque F, Tambutte E et al (2011) Coral and mollusc resistance to ocean acidification adversely affected by warming. Nat Clim Change 1(6):308–312. doi: 10.1038/NCLIMATE1200 CrossRefGoogle Scholar
  72. Rosa R, Seibel BA (2008) Synergistic effects of climate-related variables suggest future physiological impairment in a top oceanic predator. Proc Natl Acad Sci USA 105:20776–20780. doi: 10.1073/pnas.0806886105 CrossRefGoogle Scholar
  73. Shirayama Y, Thornton H (2005) Effect of increased atmospheric CO2 on shallow water marine benthos. J Geophys Res Oceans 110(C9):C09S08. doi:  10.1029/2004jc002618
  74. Small D, Calosi P, White D, Spicer JI, Widdicombe S (2010) Impact of medium-term exposure to CO2 enriched seawater on the physiological functions of the velvet swimming crab Necora puber. Aquat Biol 10:11–21. doi: 10.3354/ab00266 CrossRefGoogle Scholar
  75. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. Freeman WH and Co, New YorkGoogle Scholar
  76. Strauss SY, Irwin RE (2004) Ecological and evolutionary consequences of multispecies plant-animal interactions. Annu Rev Ecol Evol Syst 35:435–466. doi: 10.1146/annurev.ecolsys.35.112202.130215 CrossRefGoogle Scholar
  77. Sunday JM, Crim RN, Harley CDG, Hart MW (2011) Quantifying rates of evolutionary adaption in response to ocean acidification. PLoS One 6(8):e22881. doi: 10.1371/journal.pone.0022881 CrossRefGoogle Scholar
  78. Thomsen J, Gutowska MA, Saphorster J et al (2010) Calcifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification. Biogeosciences 7(11):3879–3891. doi: 10.5194/bg-7-3879-2010 CrossRefGoogle Scholar
  79. Tomanek L, Zuzow MJ, Ivanina AV, Beniash E, Sokolova IM (2011) Proteomic response to elevated pCO2 level in eastern oysters, Crassostrea virginica: evidence for oxidative stress. J Exp Biol 214:1836–1844. doi: 10.1242/jeb.055475 CrossRefGoogle Scholar
  80. Tunnicliffe V, Davies KTA, Butterfield DA et al (2009) Survival of mussels in extremely acidic waters on a submarine volcano. Nat Geosci 2(5):344–348. doi: 10.1038/NGEO500 CrossRefGoogle Scholar
  81. Verschuren D, Tibby J, Sabbe K, Roberts N (2000) Effects of depth, salinity, and substrate on the invertebrate community of a fluctuating tropical lake. Ecology 81:164–182. doi: 10.1890/0012-9658(2000)081[0164:eodsas];2 CrossRefGoogle Scholar
  82. Whiteley NM (2011) Physiological and ecological responses of crustaceans to ocean acidification. Mar Ecol Prog Ser 430:257–271. doi: 10.3354/meps09185 CrossRefGoogle Scholar
  83. Widdicombe S, Needham HR (2007) Impact of CO2-induced seawater acidification on the burrowing activity of Nereis virens and sediment nutrient flux. Mar Ecol Prog Ser 341:111–122. doi: 10.3354/meps341111 CrossRefGoogle Scholar
  84. Widdicombe S, Spicer JI (2008) Predicting the impact of ocean acidification on benthic biodiversity: what can animal physiology tell us? J Exp Mar Biol Ecol 366:187–197. doi: 10.1016/j.jembe.2008.07.024 CrossRefGoogle Scholar
  85. Widdicombe S, Dashfield SL, McNeill CL, Needham HR, Beesley A, McEvoy A, Øxnevad S, Clarke KR, Berge JA (2009a) Effects of CO2 induced seawater acidification on infaunal diversity and sediment nutrient fluxes. Mar Ecol Prog Ser 379:59–75. doi: 10.3354/meps07894 CrossRefGoogle Scholar
  86. Widdicombe S, Dupont S, Thorndyke M (2009b) Experimental design of perturbation experiments: Section 2.5 Laboratory experiments and benthic mesocosm studies. In: Riebesell U, Fabry V, Gattuso J-P (eds) Guide for best practices in ocean acidification research and data reporting. EPOCA, UKGoogle Scholar
  87. Wood HL, Spicer JI, Lowe DM, Widdicombe S (2010) Interaction of ocean acidification and temperature; the high cost of survival in the brittlestar Ophiura ophiura. Mar Biol 157:2001–2013. doi: 10.1007/s00227-010-1469-6 CrossRefGoogle Scholar
  88. Wootton JT (1994) The nature and consequences of indirect effects in ecological communities. Annu Rev Ecol Syst 25:443–466. doi: 10.1146/annurev.ecolsys.25.1.443 CrossRefGoogle Scholar
  89. Wootton JT, Pfister CA, Forester JD (2008) Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset. Proc Natl Acad Sci USA 105:18848–18853. doi: 10.1073/pnas.0810079105 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Marine Biology and Ecology Research Centre, School of Marine Science and EngineeringPlymouth UniversityPlymouthUK
  2. 2.Centre for Ecology and ConservationUniversity of Exeter Cornwall CampusPenrynUK
  3. 3.Plymouth Marine LaboratoryPlymouthUK

Personalised recommendations