Marine Biology

, Volume 160, Issue 2, pp 371–381 | Cite as

Harbours as marine habitats: hydroid assemblages on sea-walls compared with natural habitats

  • César Megina
  • Manuel M. González-Duarte
  • Pablo J. López-González
  • Stefano Piraino
Original Paper

Abstract

Sessile hydrozoans constitute a common component of marine rocky communities. We compared the hydrozoan assemblages occurring on sea-walls of commercial harbours with those on natural rocky cliffs along the southern Iberian Peninsula, to identify differences in the multivariate structure of the assemblages and species richness. Harbour hydroid assemblages significantly differed from natural ones mainly due to their qualitative composition. Medusa-less taxa, optimized for low dispersal and long-term persistence on the substratum, are barely represented in harbours, but abundant at natural sites. “Port species” assemblages were composed of (1) small, short-living species with typical opportunistic characteristics; (2) cosmopolitan large-size taxa, significantly represented both in harbours and in natural habitats; (3) non-indigenous species. Contrarily to the expected lower richness of communities in confined areas, our results demonstrate that richness of hydroid assemblages in harbours is comparable to that of natural habitats.

References

  1. Anderson M (2001) A new method for non-parametric multivariate analysis of variance. Aust Ecol 26:32–46Google Scholar
  2. Anderson M (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245–253CrossRefGoogle Scholar
  3. Anderson MJ, Robinson J (2003) Generalized discriminant analysis based on distances. Aust NZ J Stat 45:301–318CrossRefGoogle Scholar
  4. Archambault P, Bourget E (1996) Scales of coastal heterogeneity and benthic intertidal species richness. Mar Ecol Prog Ser 136:111–121CrossRefGoogle Scholar
  5. Bacchiocchi F, Airoldi L (2003) Distribution and dynamics of epibiota on hard structures for coastal protection. Estuar Coast Shelf Sci 56:1157–1166CrossRefGoogle Scholar
  6. Bavestrello G, Piraino S (1991) On two Eudendrium (Cnidaria, Hydrozoa) species from the Mediterranean Sea. Oebalia 17:197–207Google Scholar
  7. Bavestrello G, Puce S, Cerrano C, Zocchi E, Boero N (2006) The problem of seasonality of benthic hydroids in temperate waters. Chem Ecol 22:S197–S205CrossRefGoogle Scholar
  8. Boero F (1984) The ecology of marine hydroids and effects of environmental factors: a review. Mar Ecol 5:93–118CrossRefGoogle Scholar
  9. Boero F (2002) Ship-driven biological invasion in the Mediterranean Sea. In: Alien marine organisms introduced by ships in the Mediterranean and Black seas. CIESM workshop monograph, Turkey, pp 87–91Google Scholar
  10. Boero F, Bouillon J (1987) Inconsistent evolution and paedomorphosis among the hydroids and medusae of the Athecatae/Anthomedusae and the Thecatae/Leptomedusae (Cnidaria, Hydrozoa). In: Bouillon J, Boero F, Cicogna F, Cornelius PFS (eds) Modern trends in the systematics, ecology and evolution of hydroids and hydromedusae. Claredon Press, Oxford, pp 229–250Google Scholar
  11. Boero F, Fresi E (1986) Zonation and evolution of a rocky bottom hydroid community. Mar Ecol 7:123–150CrossRefGoogle Scholar
  12. Boero F, Sarà M (1987) Motile sexual stages and evolution of Leptomedusae (Cnidaria). Boll Zool 54:131–139CrossRefGoogle Scholar
  13. Boero F, Bouillon J, Piraino S (1996) Classification and phylogeny in the Hydroidomedusae (Hydrozoa, Cnidaria). In: Piraino S, Boero F, Bouillon J, Cornelius PFS, Gili JM (eds) Advances in hydrozoan biology. Sci Mar 60:17–33Google Scholar
  14. Boero F, Bouillon J, Piraino S, Schmid V (1997) Diversity of hydrozoan life cycles: ecological implications and evolutionary patterns. In: Proceedings of the 6th international conference on coelenterate biology, 1995. National Natuurhistorisch Museum, Leiden, pp 53–62Google Scholar
  15. Boero F, Bouillon J, Piraino S, Schmid V (2002) Asexual reproduction in the Hydrozoa (Cnidaria). In: Hughes RN (ed) Reproductive biology of invertebrates XI: progress in asexual reproduction. Oxford & IBH Publishing Co, New Delhi, pp 141–158Google Scholar
  16. Bouillon J, Medel MD, Pagès F, Gili JM, Boero F, Gravili C (2004) Fauna of the Mediterranean Hydrozoa. Sci Mar 68:1–449CrossRefGoogle Scholar
  17. Bouillon J, Gravili C, Pagés F, Gili JM, Boero F (2006) An introduction to Hydrozoa. Mémoires du Muséum national d’Histoire naturelleGoogle Scholar
  18. Bray JR, Curtis JT (1957) An ordination of the upland forest communities of Southern Wisconsin. Ecol Monogr 27:325–349CrossRefGoogle Scholar
  19. Bulleri F, Airoldi L (2005) Artificial marine structures facilitate the spread of a non-indigenous green alga, Codium fragile ssp. tomentosoides, in the north Adriatic Sea. J Appl Ecol 42:1063–1072CrossRefGoogle Scholar
  20. Bulleri F, Chapman MG (2004) Intertidal assemblages on artificial and natural structures in marinas on the west coast of Italy. Mar Biol 145:381–391CrossRefGoogle Scholar
  21. Bulleri F, Chapman MG (2010) The introduction of coastal infrastructure as a driver of change in marine environments. J Appl Ecol 47:26–35CrossRefGoogle Scholar
  22. Bulleri F, Chapman M, Underwood A (2005) Intertidal assemblages on seawalls and vertical rocky shores in Sydney Harbour, Australia. Aust Ecol 30:655–667CrossRefGoogle Scholar
  23. Carlton JT (1996) Biological invasions and cryptogenic species. Ecology 77:1653–1655CrossRefGoogle Scholar
  24. Carlton JT (2009) Deep invasion ecology and the assembly of communities in historical time. In: Rilov G, Crooks JA (eds) Biological invasion in marine ecosystems. Springer, Berlin, pp 13–56CrossRefGoogle Scholar
  25. Carlton JT, Eldredge LG (2009) Marine bioinvasions of Hawai‘i. The introduced and cryptogenic marine and estuarine animals and plants of the Hawaiian archipelago. Bishop Museum Bulletin in Cultural and Environmental Studies, HonoluluGoogle Scholar
  26. Chaplygina CF (2006) Vertical distribution of hydroids in wharf fouling in the Northwestern Sea of Japan. Russ J Mar Biol 32:75–81CrossRefGoogle Scholar
  27. Chapman M (2003) Paucity of mobile species on constructed seawalls: effects of urbanization on biodiversity. Mar Ecol Prog Ser 264:21–29CrossRefGoogle Scholar
  28. Chapman MG (2006) Intertidal seawalls as habitats for molluscs. J Mollus Stud 72:247–257CrossRefGoogle Scholar
  29. Chapman MG, Bulleri F (2003) Intertidal seawalls—new features of landscape in intertidal environments. Landsc Urban Plan 62:159–172CrossRefGoogle Scholar
  30. Clarke KR (1993) Non-parametric multivariate analysis of changes in community structure. Aust J Ecol 18:117–143CrossRefGoogle Scholar
  31. Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, PlymouthGoogle Scholar
  32. Clarke KR, Green RH (1988) Statistical design and analysis for a ‘biological effects’ study. Mar Ecol Prog Ser 46:213–226CrossRefGoogle Scholar
  33. Clarke KR, Warwick RM (2001) Change in marine communities. An approach to statistical analysis and interpretation, 2nd edn. PRIMER-E, PlymouthGoogle Scholar
  34. Clynick BG (2006) Assemblages of fish associated with coastal marinas in north-western Italy. J Mar Biol Assoc UK 86:847–852CrossRefGoogle Scholar
  35. Coles S, DeFelice R, Eldredge L, Carlton J (1999) Historical and recent introductions of non-indigenous marine species into Pearl Harbour, Oahu, Hawaiian Islands. Mar Biol 135:147–158CrossRefGoogle Scholar
  36. Connell S (2000) Floating pontoons create novel habitats for subtidal epibiota. J Exp Mar Biol Ecol 247:183–194CrossRefGoogle Scholar
  37. Connell SD, Glasby TM (1999) Do urban structures influence local abundance and diversity of subtidal epibiota? A case study from Sydney Harbour, Australia. Mar Environ Res 47:373–387CrossRefGoogle Scholar
  38. Cornelius P (1990) Evolution in leptolid life-cycles (Cnidaria: Hydroida). J Nat Hist 24:579–594CrossRefGoogle Scholar
  39. Di Camillo CG, Bavestrello G, Valisano L, Puce S (2008) Spatial and temporal distribution in a tropical hydroid assemblage. J Mar Biol Assoc UK 88:1589–1599CrossRefGoogle Scholar
  40. European Environment Agency (2006) The changing faces of Europe’s coastal areas. EEA report, No 6/2006. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  41. Fichet D, Radenac G, Miramand P (1998) Experimental studies of impacts of harbour sediments resuspension to marine invertebrates larvae: bioavailability of Cd, Cu, Pb and Zn and toxicity. Mar Pollut Bull 36:509–518CrossRefGoogle Scholar
  42. Galil BS (2000) A sea under siege—alien species in the Mediterranean. Biol Invasions 2:177–186CrossRefGoogle Scholar
  43. Gaonkar CA, Sawant SS, Anil AC, Krishnamurthy V, Harkantra SN (2010) Changes in the occurrence of hard substratum fauna: a case study from Mumbai. Indian J Mar Sci 39:74–84Google Scholar
  44. García Corrales P, Aguirre Inchaurbe A, González Mora D (1978) Contribución al conocimiento de los hidrozoos de las costas españolas. Parte I: Halecidos, Campanularidos y Plumularidos. Bol Inst Esp Oceanogr 4:5–73Google Scholar
  45. Gili JM (1986) Estudio sistemático y faunístico de los Cnidarios de la Costa Catalana. PhD Thesis. Universidad Autónoma de Barcelona, SpainGoogle Scholar
  46. Gili JM, Hughes RG (1995) The ecology of marine benthic hydroids. Oceanogr Mar Biol Annu Rev 33:351–426Google Scholar
  47. Glasby TM, Connell SD, Holloway MG, Hewitt CL (2007) Nonindigenous biota on artificial structures: could habitat creation facilitate biological invasions? Mar Biol 151:887–895CrossRefGoogle Scholar
  48. Goldfuss GA (1820) Handbuch der Zoologie. Erste Abteilung. Schrag, NürnbergGoogle Scholar
  49. Haydar D (2012) What is natural? The scale of cryptogenesis in the North Atlantic Ocean. Divers Distrib 18:101–110CrossRefGoogle Scholar
  50. Hewitt CL, Campbell ML, Thresher RE, Martin RB, Boyd S, Cohen BF, Currie DR, Gomon MF, Keough MJ, Lewis JA, Lockett MM, Mays N, McArthur MA, O’Hara TD, Poore GCB, Ross DJ, Storey MJ, Watson JE, Wilson RS (2004) Introduced and cryptogenic species in Port Phillip Bay, Victoria, Australia. Mar Biol 144:183–202Google Scholar
  51. Leclère L, Schuchert P, Cruaud C, Couloux A, Manuel M (2009) Molecular phylogenetics of Thecata (Hydrozoa, Cnidaria) reveals long-term maintenance of life history traits despite high frequency of recent character changes. Syst Biol 58:509–526CrossRefGoogle Scholar
  52. McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–297CrossRefGoogle Scholar
  53. Mead A, Carlton JT, Griffiths CL, Rius M (2011) Introduced and cryptogenic marine and estuarine species of South Africa. J Nat Hist 45:2463–2524CrossRefGoogle Scholar
  54. Medel MD, Vervoort W (1995) Plumularian hydroids (Cnidaria: Hydrozoa) from the Strait of Gibraltar and nearly areas. Zool Verh Leiden 300:1–72Google Scholar
  55. Mergner H (1977) Hydroids as indicator species of ecological parameters in Caribbean and Red Sea coral reefs. In: Taylor DL (ed) Proceedings of the 3rd international coral reef symposium, Miami, pp 119–125Google Scholar
  56. Miglietta MP, Lessios HA (2009) A silent invasion. Biol Invasions 11:825–834CrossRefGoogle Scholar
  57. Miglietta MP, Piraino S, Kubota S, Schuchert P (2007) Species in the genus Turritopsis (Cnidaria, Hydrozoa): a molecular evaluation. J Zool Syst Evol Res 45:11–19CrossRefGoogle Scholar
  58. Migotto AE, Marques AC, Flynn MN (2001) Seasonal recruitment of hydroids (Cnidaria) on experimental panels in the São Sebastião Channel, Southeastern Brazil. Bull Mar Sci 68:287–298Google Scholar
  59. Morri C, Boero F (1986) Marine fouling hydroids. In: Catalogue of the main marine fouling organisms, 7(Hydroids). ODEMA, BruxellesGoogle Scholar
  60. Morri C, Puce S, Bianchi CN, Bitar G, Zibrowius H, Bavestrello G (2009) Hydroids (Cnidaria: Hydrozoa) from the Levant Sea (mainly Lebanon), with emphasis on alien species. J Mar Biol Assoc UK 89:49–62CrossRefGoogle Scholar
  61. Occhipinti-Ambrogi A, Marchini A, Cantone G, Castelli A, Chimenz C, Cormaci M, Froglia C, Furnari G, Gambi MC, Giaccone G, Giangrande A, Gravili C, Mastrototaro F, Mazziotti C, Orsi-Relini L, Piraino S (2011) Alien species along the Italian coasts: an overview. Biol Invasions 13:215–237CrossRefGoogle Scholar
  62. Piraino S, Morri C (1990) Zonation and ecology of epiphytic hydroids in a mediterranean coastal lagoon: the ‘Stagnone’ of Marsala (North-West Sicily). Mar Ecol 11:43–60CrossRefGoogle Scholar
  63. Piraino S, Boero F, Aeschbach B, Schmid V (1996) Reversing the life cycle: medusae transforming into polyps and cell transdifferentiation in Turritopsis nutricula (Cnidaria, Hydrozoa). Biol Bull 190:302–312CrossRefGoogle Scholar
  64. Piraino S, DeVito D, Schmich J, Bouillon J, Boero F (2004) Reverse development in cnidaria. Can J Zool 82:1748–1754CrossRefGoogle Scholar
  65. Pister B (2009) Urban marine ecology in southern California: the ability of riprap structures to serve as rocky intertidal habitat. Mar Biol 156:861–873CrossRefGoogle Scholar
  66. Platt W, Connell JH (2003) Natural disturbances and directional replacement of species. Ecol Monogr 73:507–522CrossRefGoogle Scholar
  67. Puce S, Bavestrello G, Di Camillo CG, Boero F (2009) Long-term changes in hydroid (Cnidaria, Hydrozoa) assemblages: effect of Mediterranean warming? Mar Ecol 30:313–326CrossRefGoogle Scholar
  68. Reise K (2005) Coast of change: habitat loss and transformations in the Wadden Sea. Helgol Mar Res 59:9–21CrossRefGoogle Scholar
  69. Roca I, Moreno I (1985) Distribución de los cnidarios bentónicos litorales en tres localidades de la margen W. de la Bahía de Palma de Mallorca. Boll Soc Hist Nat Balear 29:19–30Google Scholar
  70. Ruiz GM, Fofonoff PW, Carlton JT, Wonham MJ, Hines AH (2000) Invasion of coastal marine communities in North America: apparent patterns, processes, and biases. Annu Rev Ecol Syst 31:481–531CrossRefGoogle Scholar
  71. Saiz-Salinas JJ, Urkiaga-Alberdi J (1999) Faunal responses to turbidity in a man-modified bay (Bilbao, Spain). Mar Enviro Res 47:331–334CrossRefGoogle Scholar
  72. Schuchert P (2004) Revision of the European athecate hydroids and their medusae (Hydrozoa, Cnidaria): families Oceanidae and Pachycordylidae. Rev Suisse Zool 111:315–369Google Scholar
  73. Standing JD (1976) Fouling community structure: effects of the hydroid, Obelia dichotoma, on larval recruitment. In: Mackie GO (ed) Coelenterate ecology and behaviour. Plenum Press, New York, pp 155–164Google Scholar
  74. Statsoft, Inc. (2001). STATISTICA (Data Analysis Software System), version 6.0. www.statsoft.com
  75. Tarjuelo I, Posada D, Crandall K, Pascual M, Turon X (2001) Cryptic species of Clavelina (Ascidiacea) in two different habitats: harbours and rocky littoral zones in the northwestern Mediterranean. Mar Biol 139:455–462CrossRefGoogle Scholar
  76. Turon X, Tarjuelo I, Duran S, Pascual M (2003) Characterising invasion processes with genetic data: an Atlantic clade of Clavelina lepadiformis (Ascidiacea) introduced into Mediterranean harbours. Hydrobiologia 503:29–35CrossRefGoogle Scholar
  77. Tyrrell M, Byers J (2007) Do artificial substrates favor nonindigenous fouling species over native species? J Exp Mar Biol Ecol 342:54–60CrossRefGoogle Scholar
  78. Underwood AJ, Chapman MG (1996) Scales of spatial patterns of distribution of intertidal invertebrates. Oecologia 107:212–224CrossRefGoogle Scholar
  79. Venugopalan V, Wagh AB (1986) A note on the fouling hydroids from the offshore waters of Bombay. Mahasagar Bull Natl Inst Oceanogr 19:275–277Google Scholar
  80. Zenetos A, Çinar ME, Pancucci-Papadopoulou MA, Harmelin JG, Furnari G, Andaloro F, Bellou N, Streftaris N, Zibrowius H (2005) Annotated list of marine alien species in the Mediterranean with records of the worst invasive species. Mediterr Mar Sci 6:63–118Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • César Megina
    • 1
  • Manuel M. González-Duarte
    • 2
  • Pablo J. López-González
    • 1
  • Stefano Piraino
    • 3
  1. 1.Departamento de Zoología, Facultad de BiologíaUniversidad de SevillaSevilleSpain
  2. 2.Centro Andaluz de Ciencia y Tecnología Marinas (CACYTMAR)Universidad de CádizPuerto RealSpain
  3. 3.Laboratorio di Biologia Evolutiva degli Invertebrati marini, Dipartimento di Scienze e Tecnologie, Biologiche ed Ambientali (DISTEBA)Università del SalentoLecceItaly

Personalised recommendations