Marine Biology

, Volume 159, Issue 11, pp 2367–2377 | Cite as

The response of temperate aquatic ecosystems to global warming: novel insights from a multidisciplinary project

  • Ulrich SommerEmail author
  • Rita Adrian
  • Barbara Bauer
  • Monika Winder
Review, Concept and Synthesis


This article serves as an introduction to this special issue of Marine Biology, but also as a review of the key findings of the AQUASHIFT research program which is the source of the articles published in this issue. AQUASHIFT is an interdisciplinary research program targeted to analyze the response of temperate zone aquatic ecosystems (both marine and freshwater) to global warming. The main conclusions of AQUASHIFT relate to (a) shifts in geographic distribution, (b) shifts in seasonality, (c) temporal mismatch in food chains, (d) biomass responses to warming, (e) responses of body size, (f) harmful bloom intensity, (f), changes of biodiversity, and (g) the dependence of shifts to temperature changes during critical seasonal windows.


Aquatic ecosystems Global change Warming Seas Lakes Rivers 



We gratefully acknowledge funding of the priority program AQUASHIFT by the DFG. The content of the manuscript has been checked by all co-authors of this special issue and all PIs of the AQUASHIFT projects.

Supplementary material

227_2012_2085_MOESM1_ESM.docx (61 kb)
Supplementary material 1 (DOCX 61 kb)


  1. Aberle N, Lengfellner K, Sommer U (2007) Spring bloom succession, grazing impact and herbivore selectivity of ciliate communities in response to winter warming. Oecologia 150:668–681Google Scholar
  2. Aberle N, Bauer B, Lewandowska A, Gaedke U, Sommer U (2012) Warming induces shifts in micro zooplankton phenology and reduces time-lags between phytoplankton and protozoan production. Mar Biol (in this issue). doi: 10.1007/s00227-012-1947-0
  3. Adrian R, Gerten D, Huber V, Wagner C, Schmidt S (2012) Windows of change: temporal scale of analysis is decisive to detect ecosystem responses to climate change. Mar Biol (in this issue). doi: 10.1007/s00227-012-1938-1
  4. Allen AP, Brown JH, Gillooly JF (2002) Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science 297:1545–1548CrossRefGoogle Scholar
  5. Berger SA, Diehl S, Stibor H, Trommer G, Ruhenstroth M, Jäger C, Striebel M (2007) Water temperature and mixing depth affect timing and intensity of events during spring succession of the plankton. Oecologia 150:643–654CrossRefGoogle Scholar
  6. Berger SA, Diehl S, Stibor H, Trommer G, Ruhenstroth M (2010) Water temperature and stratification depth independently shift cardinal events during plankton spring succession. Glob Change Biol 7:1954–1965CrossRefGoogle Scholar
  7. Bergmann N, Winters G, Rauch G, Eizaguirre C, Gu J, Nelle P, Fricke B, Reusch TBH (2010) Population-specificity of heat stress gene induction in northern and southern eelgrass Zostera marina populations under simulated global warming. Mol Ecol 19:2870–2883CrossRefGoogle Scholar
  8. Braune E, Richter O, Söndgerath D, Suhling F (2008) Voltinism flexibility of a riverine dragonfly along thermal gradients. Glob Change Biol 14:470–482CrossRefGoogle Scholar
  9. Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:771–1789Google Scholar
  10. Burgmer T, Hillebrand H (2011) Temperature mean and variance alter phytoplankton biomass and biodiversity in a long-term microcosm experiment. Oikos 120:920–933CrossRefGoogle Scholar
  11. Burgmer T, Hillebrand H, Pfenninger M (2007) Effects of climate-driven temperature changes on the diversity of freshwater macro invertebrates. Oecologia 151:91–103CrossRefGoogle Scholar
  12. Cordellier M, Pfenninger A, Streit B, Pfenninger M (2012) Assessing the effects of climate change on the distribution of pulmonate freshwater snail biodiversity. Mar Biol (in this issue). doi: 10.1007/s00227-012-1894-9
  13. Cushing DH (1990) Plankton production and year-class strength in fish populations—an update of the match-mismatch hypothesis. Adv Mar Biol 26:249–293CrossRefGoogle Scholar
  14. Daufresne M, Lengfellner K, Sommer U (2009) Global warming benefits the small in aquatic ecosystems. Proc Nat Acad Sci 106:12788–12793CrossRefGoogle Scholar
  15. De SenerpontDomis LN, Mooij WM, Hülsmann S, van Nes EH, Scheffer M (2007) Can overwintering versus diapausing strategy in Daphnia determine match-mismatch events in zooplankton-algae interactions? Oecologia 150:682–698CrossRefGoogle Scholar
  16. Dieckmann ABS, Clemmesen C, St John MA, Paulsen M, Peck MY (2012) Environmental cues and constraints affecting the seasonality of dominant calanoid copepods in brackish, coastal waters: a case study of Acartia, Temora and Eurytemora species in the south-west Baltic. Mar Biol (in this issue). doi: 10.1007/s00227-012-1955-0
  17. Diehl S (2007) Paradoxes of enrichment: effects of increased light versus nutrient supply on pelagic producer-grazer systems. Am Nat 169:E171–E191CrossRefGoogle Scholar
  18. Durant JM, Hjermann DO, Ottersen G, Stenseth NC (2007) Climate and the match or mismatch between predator requirements and resource availability. Clim Res 33:271–283CrossRefGoogle Scholar
  19. Dziallas C, Grossart H-P (2011a) Temperature and biotic factors influence bacterial communities associated with Microcystis sp. (cyanobacteria). Environ Microbiol 13:1632–1641CrossRefGoogle Scholar
  20. Dziallas C, Grossart H-P (2011b) Increasing oxygen radicals and water temperature select for toxic Microcystis sp. PLoS One 6(9):e25569CrossRefGoogle Scholar
  21. Dziallas C, Grossart HP (2012) Microbial interactions with the cyanobacterium Microcystisaeruginosa and their dependence on temperature. Mar Biol (in this issue). doi: 10.1007/s00227-012-1927-4
  22. Dziallas C, Pinnow S, Grossart HP (2011) Detection and quantification of toxigenic and toxic cyanobacterial cells using recognition of individual gens fluorescence in situ hybridization (RING-FISH) and flow cytometry. Limnol Oceanogr Methods 9(2011):67–73Google Scholar
  23. Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430:881–884CrossRefGoogle Scholar
  24. Edwards M, Beaugrand G, Reid PC, Rowden A, Jones MB (2002) Ocean climate anomalies and the ecology of the North Sea. Mar Ecol Progr Ser 239:1–10CrossRefGoogle Scholar
  25. Engel A, Händel N, Wohlers J, Lunau M, Grossart HP, Sommer U, Riebesell U (2011) Effects of sea surface warming on the production and composition of dissolved organic matter during phytoplankton blooms: results from a mesocosm study. J Plankt Res 33:357–372CrossRefGoogle Scholar
  26. Finkel ZV, Sebbo J, Feist-Burkhardt S et al (2007) A universal driver of macroevolutionary change in the size of marine phytoplankton over the Cenozoic. Proc Nat Acad Sci 104:20416–20420CrossRefGoogle Scholar
  27. Flenner I, Richter O, Suhling F (2010) Latitudinal variations in development in dragonfly populations and effects of rising temperatures. Freshw Biol 55:397–410CrossRefGoogle Scholar
  28. Franssen SU, Gu J, Bergmann N, Winters G, Klostermeier UC, Rosenstiel P, Bornberg-Bauer E, Reusch TBH (2011) Transc-riptomic resilience to global warming in the seagrass Zostera marina, a marine foundation species. Proc Nat Acad Sci 108:19276–19281CrossRefGoogle Scholar
  29. Freund JA, Grüner N, Brüse S, Wiltshire KH (2012) Changes in the phytoplankton community at Helgoland, North Sea: lessons from single spot time series analyses. Mar Biol (in this issue). doi: 10.1007/s00227-012-2013-7
  30. Gaedke U, Ruhenstroth-Bauer M, Wiegand I, Tirok K, Aberle N, Breithaupt P, Lengfellner K, Wohlers J, Sommer U (2010) Biotic interactions may overrule direct climate effects on spring phytoplankton dynamics. Glob Change Biol 16:1122CrossRefGoogle Scholar
  31. Gardner JL, Peters A, Kearney MR, Joseph L, Heinsohn R (2011) Declining body size: a third universal response to warming? Trends Ecol Evol 26:285–291CrossRefGoogle Scholar
  32. Gerten D, Adrian R (2000) Climate driven changes in spring plankton dynamics and the sensitivity of shallow polymictic lakes to the North Atlantic Oscillation. Limnol Oceanogr 45:1058–1066CrossRefGoogle Scholar
  33. Haslob H, Hauss H, Petereit C, Clemmesen C, Krau G, Peck MA (2012) Temperature effects on vital rates of different life stages and implications for population growth of Baltic sprat. Mar Biol (in this issue). doi: 10.1007/s00227-012-1933-6
  34. Hillebrand H (2011) Temperature mediates competitive exclusion and diversity in benthic microalgaeunder different N:P stoichiometry. Ecol Res 26:533–539CrossRefGoogle Scholar
  35. Hillebrand H, Soininen J, Snoeijs P (2010) Warming leads to higher species turnover in a coastal ecosystem. Glob Change Biol 16:1181–1193CrossRefGoogle Scholar
  36. Hillebrand H, Burgmer T, Biermann E (2012) Running to stand still: temperature effects on species richness. species turnover, and functional community dynamics. Mar Biol (in this issue). doi: 10.1007/s00227-011-1827-z
  37. Holste L, Peck MA (2006) The effects of temperature and salinity on egg production and hatching success of Baltic Acartiatonsa(Copepoda: Calanoida): a laboratory investigation. Mar Biol 148:1061–1070CrossRefGoogle Scholar
  38. Holste L, St John MA, Peck MA (2009) The effects of temperature and salinity on reproductive success of Temora longicornis in the Baltic Sea: a copepod coping with a tough situation. Mar Biol 156:527–540CrossRefGoogle Scholar
  39. Hoppe HG, Breithhaupt P, Walther K, Koppe R, Bleck S, Sommer U, Jürgens K (2008) Climate warming in winter affects the coupling between phytoplankton and bacteria during the spring bloom. Aquat Microbial Ecol 51:105–115CrossRefGoogle Scholar
  40. Huber V, Adrian R, Gerten D (2008) Phytoplankton response to climate warming modified by trophic state. Limnol Oceanogr 53:1–13CrossRefGoogle Scholar
  41. Huber V, Adrian R, Gerten D (2010) A matter of timing: heat wave impact on crustacean zooplankton. Freshw Biol 55:1769–1779Google Scholar
  42. Huber V, Wagner C, Gerten D, Adrian R (2012) To bloom or not to bloom: contrasting responses of cyanobacteria to recent heat waves explained by critical thresholds of abiotic drivers. Oecologia 169:245–256CrossRefGoogle Scholar
  43. Hülsmann S, Wagner A (2007) Multiple defence strategies of Daphnia galeata against predation in a weakly stratified reservoir. Hydrobiologia 594:187–199CrossRefGoogle Scholar
  44. Hülsmann S, Wagner A, Pitsch M, Horn W, Paul RJ, Rother A, Zeis B (2012) Effects of winter conditions on Daphnia dynamics and genetic diversity in a dimictic temperate reservoir. Freshw Biol 57:1458CrossRefGoogle Scholar
  45. Isla A, Lengfellner K, Sommer U (2008) Physiological response of the copepod Pseudocalanus sp. in the Baltic Sea at different thermal scenarios. Glob Change Biol 14:895–906CrossRefGoogle Scholar
  46. Klauschies T, Bauer B, Aberle N, Sommer U, Gaedke U (2012) Climate change effects on phytoplankton depend on cell size and food web structure. Mar Biol (in this issue). doi: 10.1007/s00227-012-1904-y
  47. Krenek S, Petzoldt T, Berendonk TU (2012) Coping with temperature at the warm edge—patterns of thermal adaptation in the microbial eukaryote Paramecium caudatum. PLoS One 7:e30598CrossRefGoogle Scholar
  48. Kupisch M, Moenickes S, Schlief J, Frassl M, Richter O (2012). Temperature dependent consumer-resource dynamics: a coupled structured model for Gammaruspulex (L.) and leaf litter. Ecol Model. doi: 10.1016/j.ecolmodel.2012.07.037
  49. Lewandowska A, Breithaupt P, Hillebrand H, Hoppe HG, Jürgens K, Sommer U (2012) Responses of primary productivity to increased temperature and phytoplankton diversity. J Sea Res. doi: 10.1016/j.seares.2011.10.003
  50. Lohmann G, Wiltshire KH (2012) Winter atmospheric circulation signature for the timing of the spring bloom of diatoms in the North Sea. Mar Biol (in this issue). doi: 10.1007/s00227-012-1993-7
  51. Mehner T, Busch S, Clemmesen C, Helland IP, Hölker F, Ohlberger J, Peck MA (2012) Ecological commonalities among pelagic fishes: comparison of freshwater ciscoes and marine herring and sprat. Mar Biol (in this issue). doi: 10.1007/s00227-012-1922-9
  52. Moenickes S, Frassl M, Schlief J, Mutz M, Suhling F, Richter O (2012) Temporal patterns of populations in a warming world: a modelling framework. Mar Biol (in this issue). doi: 10.1007/s00227-012-1996-4
  53. Müren U, Berglund J, Samuelsson K, Andersson A (2005) Potential effects of elevated sea-water temperature on pelagic food webs. Hydrobiologia 545:153–166CrossRefGoogle Scholar
  54. Nomdedeu MM, Willen C, Schieffer A, Arndt H (2012) Temperature-dependent ranges of coexistence in a model of a two-prey-one-predator microbial food web. Mar Biol (in this issue). doi: 10.1007/s00227-012-1966-x
  55. Norf H, Weitere M (2010) Resource quantity and seasonal background alter warming effects on communities of biofilm ciliates. FEMS Microb Ecol 74:361–370CrossRefGoogle Scholar
  56. O’Connor MI, Piehler MF, Leech DM, Anton A, Bruno JF (2009) Warming and resource availability shift food web structure and metabolism. PLoS Biol 7:e1000178CrossRefGoogle Scholar
  57. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42CrossRefGoogle Scholar
  58. Paul RJ, Mertenskötter A, Pinkhaus O, Pirow R, Gigengack U, Buchen I, Koch M, Horn W, Zeis B (2012) Seasonal and interannual changes in water temperature affect the genetic structure of a Daphnia assemblage (D. longispina complex) through genotype-specific thermal tolerances. Limnol Oceanogr 57:619–633CrossRefGoogle Scholar
  59. Peeters F, Straile D, Lorke A, Livingstone DM (2007a) Earlier onset of the spring phytoplankton bloom in lakes of the temperate zone in a warmer climate. Glob Change Biol 13:1898–1909CrossRefGoogle Scholar
  60. Peeters F, Straile D, Lorke A, Ollinger D (2007b) Turbulent mixing and phytoplankton spring bloom development in a deep lake. Limnol Oceanogr 52:286–298CrossRefGoogle Scholar
  61. Petereit C, Haslob H, Kraus G, Clemmesen C (2008) The influence of temperature on the development of Baltic Sea sprat (Sprattus sprattus) eggs and yolk sac larvae. Mar Biol 154:295–306CrossRefGoogle Scholar
  62. Pfenninger M, Salinger M, Haun T, Feldmeyer B (2011) Factors and processes shaping the population structure and distribution of genetic variation across the species range of the freshwater snail Radix balthica (Pulmonata, Basommatophora). BMC Evol Biol 11:135CrossRefGoogle Scholar
  63. Pinkhaus O, Schwerin S, Pirow R, Zeis B, Buchen I, Gigengack U, Koch M, Horn W, Paul RJ (2007) Temporal environmental change, clonal physiology and the genetic structure of a Daphnia assemblage (D. galeata-hyalina hybrid species complex). Freshw Biol 52:1537–1554CrossRefGoogle Scholar
  64. Richter O, Suhling F, Müller O, Kern D (2008) A model for predicting the emergence of dragonflies in a changing climate. Freshw Biol 53:1868–1880CrossRefGoogle Scholar
  65. Rolinski S, Horn H, Petzoldt T, Paul L (2007) Identifying cardinal dates in phytoplankton time series to enable the analysis of long-term trends. Oecologia 153:997–1008CrossRefGoogle Scholar
  66. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60CrossRefGoogle Scholar
  67. Russell BD, Connell SD (2012) Origins and consequences of global and local stressors: incorporating climatic and non-climatic phenomena that buffer or accelerate ecological change. Mar Biol (in this issue). doi: 10.1007/s00227-011-1863-8
  68. Schalau K, RinkeK StraileD, Peeters F (2008) Temperature is the key factor explaining interannual variability of Daphnia development in spring—a modelling study. Oecologia 157:531–543CrossRefGoogle Scholar
  69. Schlief J, Mutz M (2009) Effect of sudden flow reduction on the decomposition of alder leaves (Alnusglutinosa[L.] Gaertn.) in a temperate lowland stream: a mesocosm study. Hydrobiologia 624:205–217CrossRefGoogle Scholar
  70. Sebastian P, Stibor H, Berger SA, Diehl S (2012) Effects of water temperature and mixed layer depth on zooplankton body size. Mar Biol (in this issue). doi: 10.1007/s00227-012-1931-8
  71. Seebens H, Einsle U, Straile D (2009) Copepod life cycle adaptations and success in response to phytoplankton spring bloom phenology. Glob Change Biol 15:1394–1404CrossRefGoogle Scholar
  72. Sommer U, Lengfellner K (2008) Climate change and the timing, magnitude and composition of the phytoplankton spring bloom. Glob Change Biol 14:1199–1208CrossRefGoogle Scholar
  73. Sommer U, Lewandowska A (2011) Climate change and the phytoplankton spring bloom: warming and overwintering zooplankton have similar effects on phytoplankton. Glob Change Biol 17:154–162CrossRefGoogle Scholar
  74. Sommer U, Aberle N, Engel A, Hansen T, Lengfellner K, Sandow M, Wohlers J, Zöllner U, Riebesell U (2007) An indoor mesocosm system to study the effect of climate change on the late winter and spring succession of Baltic Sea phyto- and zooplankton. Oecologia 150:655–667CrossRefGoogle Scholar
  75. Sommer U, Aberle N, Lengfellner K, Lewandowska A (2012) The Baltic Sea spring phytoplankton bloom in a changing climate: an experimental approach. Mar Biol (in this issue). doi: 10.1007/s00227-012-1897-6
  76. Stenseth NC, Mysterud A, Ottersen G, Hurrell JW, Chan KS, Lima M (2002) Ecological effects of climate fluctuations. Science 297:1292–1296CrossRefGoogle Scholar
  77. Straile D, Kerimoglu O, Peeters F, Jochimsen MC, Kümmerlin R, Rinke K, Rothhaupt KO (2010) Effects of a half a millennium winter on a deep lake—a shape of things to come? Glob Change Biol 10:2844–2856CrossRefGoogle Scholar
  78. Suttle KB, Thomsen MA, Power ME (2007) Species interactions reverse grassland responses to changing climate. Science 315:604–642CrossRefGoogle Scholar
  79. Thackeray SJ, Sparks TH, Frederiksen M, Burthe S, Bacon PJ, Bell JR, Botham MS, Brereton TM, Bright PW, Carvalho L, Clutton-Brock T, Dawson A, Edwards M, Elliott JM, Harrington R, Johns D, Jones ID, Jones JT, Leech DI, Roy DB, Scott WA, Smith M, Smithers RJ, Winfield IJ, Wanless S (2010) Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob Change Biol 16:3304–3313CrossRefGoogle Scholar
  80. Tirok K, Gaedke U (2006) Spring weather determines the relative importance of ciliates, rotifers and crustaceans for the initiation of the clear-water phase in a large, deep lake. J Plankton Res 28:361–373CrossRefGoogle Scholar
  81. Tirok K, Gaedke U (2007a) a) Regulation of planktonic ciliate dynamics and functional composition during spring in Lake Constance. Aquat Microb Ecol 49:87–100CrossRefGoogle Scholar
  82. Tirok K, Gaedke U (2007b) The effect of irradiance, vertical mixing and temperature on spring phytoplankton dynamics under climate change—long-term observations and models. Oecologia 150:625–642CrossRefGoogle Scholar
  83. Viergutz C, Kathol M, Norf H, Arndt H, Weitere M (2007) Control of microbial communities by the macrofauna: a sensitive interaction in the context of extreme summer temperatures? Oecologia 151:115–124CrossRefGoogle Scholar
  84. Viergutz C, Linn C, Weitere M (2012) Intra- and interannual variability surpasses direct temperature effects on the clearance rates of the invasive clam Corbiculafluminea. Mar Biol (in this issue). doi: 10.1007/s00227-012-1902-0
  85. Visser ME, van Noordwijk AJ, Tinbergen JM, Lessells CM (1998) Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc R Soc Lond Ser B 265:1867–1870CrossRefGoogle Scholar
  86. Wagner C, Adrian R (2009a) Exploring lake ecosystems: hierarchy responses to long-term change? Glob Change Biol 15:1104–1115CrossRefGoogle Scholar
  87. Wagner C, Adrian R (2009b) Cyanobacteria dominance—quantifying the effects of climate change. Limnol Oceanogr 54:2460–2468CrossRefGoogle Scholar
  88. Wagner C, Adrian R (2011) Consequences of changes in thermal regime for plankton diversity and trait composition in a polymictic lake: a matter of temporal scale. Freshw Biol 56:1949–1961CrossRefGoogle Scholar
  89. Wagner A, Benndorf J (2007) Climate-driven warming during spring destabilises a Daphnia population: a mechanistic food web approach. Oecologia 151:351–364CrossRefGoogle Scholar
  90. Wagner A, Hülsmann S, Paul L, Paul RJ, Petzoldt T, Sachse R, Schiller T, Zeis B, Benndorf J, Berendonk TU (2012a) A phenomenological approach shows a high coherence of warming patterns in dimictic aquatic systems across latitude. Mar Biol (in this issue). doi: 10.1007/s00227-012-1934-5
  91. Wagner A, Hülsmann S, Horn W, Schiller T, Schulze T, Volkmann S, Benndorf J (2012b) Climate warming stabilizes a planktonic keystone herbivore by changes in trophic match. Freshw Biol. doi: 10.1111/j.1365-2427.2012.02809.x
  92. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:89–395Google Scholar
  93. Weyhenmeyer GA, Blenckner T, Pettersson K (1999) Changes of the plankton spring outburst related to the North Atlantic oscillation. Limnol Oceanogr 44:1788–1792Google Scholar
  94. Wehenmeyer GA (2001) Warmer winters: are planktonic populations in Sweden’s largest lake affected? Ambio 30:565–571Google Scholar
  95. Weitere M, Dahlmann J, Viergutz C, Arndt H (2008) Differential grazer-mediated effects of high summer temperatures on pico- and nanoplankton communities. Limnol Oceanogr 53:477–486CrossRefGoogle Scholar
  96. Weitere M, Vohmann A, Schulz N, Linn C, Dietrich D, Arndt H (2009) Linking environmental warming to the fitness of the invasive clam Corbiculafluminea. Glob Change Biol 15:2838–2851CrossRefGoogle Scholar
  97. Wiedner C, Rücker J, Brüggemann R, Nixdorf B (2007) Climate change affects timing and size of populations of an invasive cyanobacterium in temperate regions. Oecologia 152:473–484CrossRefGoogle Scholar
  98. Wiltshire KH, Manly BFJ (2004) The warming trend at Helgoland Roads, North Sea: phytoplankton response. Helgoland Mar Res 58:269–273CrossRefGoogle Scholar
  99. Wiltshire KH, Malzahn AM, Wirtz K, Greve W, Janisch S, Mangelsdorf P, Manly BFJ, Boersma M (2008) Resilience of North Sea phytoplankton spring bloom dynamics: an analysis of long-term data at Helgoland Roads. Limnol Oceanogr 53:1294–1302CrossRefGoogle Scholar
  100. Wiltshire KH, Kraberg A, Bartsch I, Boersma M, Franke HD, Freund J, Gebühr C, Gerdts G, Stockmann K, Wichels A (2010) Helgoland Roads: 45 years of change. Estuaries Coasts 33:295–310CrossRefGoogle Scholar
  101. Winder M, Schindler DE (2004) Climate change uncouples trophic interactions in a lake ecosystem. Ecology 85:2100–2106CrossRefGoogle Scholar
  102. Winder M, Reuter JE, Schladow SG (2009) Lake warming favours small-sized planktonic diatom species. Proc R Soc Lond B 276:427–435CrossRefGoogle Scholar
  103. Winder M, Berger SA, Lewandowska A, Aberle N, Lengfellner K, Sommer U, Diehl S (2012) Spring phenological responses of marine and freshwater plankton to changing temperature and light conditions. Mar Biol (in this issue). doi: 10.1007/s00227-012-1964-z
  104. Winters G, Nelle P, Fricke B, Rauch G, Reusch TBH (2011) Effects of a simulated heat wave on photophysiology and gene expression of high- and low-latitude populations of Zostera marina. Mar Ecol Progr Ser 435:83–95CrossRefGoogle Scholar
  105. Wohlers J, Engel A, Zöllner E, Breithaupt P, Jürgens K, Hoppe HG, Sommer U, Riebesell U (2009) Changes in biogenic carbon flow in response to sea surface warming. Proc Nat Acad Sci 106:7067–7072CrossRefGoogle Scholar
  106. Wohlers-Zöllner J, Breithaupt P, Walther K, Jürgens K, Riebesell U (2011) Temperature and nutrient stoichiometry interactively modulate organic matter cycling in a pelagic algal–bacterial community. Limnol Oceanogr 56:599–610CrossRefGoogle Scholar
  107. Wohlers-Zöllner J, Biermann A, Engel A, Dörge P. Lewandowska AM, ScheibnerMv, Riebesell U (2012) Effects of rising temperature on pelagic biogeochemistry in mesocosm systems: a comparative analysis of the AQUASHIFT Kiel experiments. Mar Biol (in this issue). doi: 10.1007/s00227-012-1958-x
  108. Yvon-Durocher G, Montoya JM, Trimmer M, Woodward G (2011) Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems. Glob Change Biol 17:1681–1694CrossRefGoogle Scholar
  109. Zeis B, Horn W, Gigengack U, Koch M, Paul RJ (2010) A major shift in Daphnia genetic structure after the first ice-free winter in a German reservoir. Freshwat Biol 55:2296–2304Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ulrich Sommer
    • 1
    Email author
  • Rita Adrian
    • 2
  • Barbara Bauer
    • 1
  • Monika Winder
    • 3
  1. 1.Helmholtz Centre for Ocean Research (GEOMAR)KielGermany
  2. 2.Leibniz–Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
  3. 3.Department of Systems EcologyUniversity of StockholmStockholmSweden

Personalised recommendations