Marine Biology

, Volume 160, Issue 8, pp 2023–2035 | Cite as

Tolerance of juvenile barnacles (Amphibalanus improvisus) to warming and elevated pCO2

  • Christian Pansch
  • Ali Nasrolahi
  • Yasmin Shirin Appelhans
  • Martin Wahl
Original Paper


We investigated the impacts of warming and elevated pCO2 on newly settled Amphibalanus improvisus from Kiel Fjord, an estuarine ecosystem characterized by significant natural pCO2 variability. In two experiments, juvenile barnacles were maintained at two temperature and three pCO2 levels (20/24 °C, 700–2,140 μatm) for 8 weeks in a batch culture and at four pCO2 levels (20 °C, 620–2,870 μatm) for 12 weeks in a water flow-through system. Warming as well as elevated pCO2 hardly affected growth or the condition index of barnacles, although some factor combinations led to temporal significances in enhanced or reduced growth with an increase in pCO2. While warming increased the shell strength of A. improvisus individuals, elevated pCO2 had only weak effects. We demonstrate a strong tolerance of juvenile A. improvisus to mean acidification levels of about 1,000 μatm pCO2 as is already naturally experienced by the investigated barnacle population.


High pCO2 Breaking Force Elevated pCO2 pCO2 Level pCO2 Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the divers of the benthic ecology group at the GEOMAR and Jörn Thomsen for water sampling; Arne Körtzinger and Mandy Kierspel for pH, C T, and A T measurements; Jon Havenhand and Martin Ogemark for valuable advice on algal culture methods; Sarah Klünder and Giannina Hattich for maintenance as well as Hagen Pieper for map illustrations. This project was financed by the cluster of excellence “the future ocean” (Deutsche Forschungsgesellschaft—DFG; Neglected Bottleneck: D1067/34.1), the German National Academic Foundation and the BioAcid project (Federal Ministry of Education and Research—BMBF; D10/4.1.2; FKZ 03F0608A).


  1. Barnes H, Klepal W, Mitchell BD (1976) Organic and inorganic composition of some cirripede shells. J Exp Mar Biol Ecol 21:119–127. doi: 10.1016/0022-0981(76)90033-2 CrossRefGoogle Scholar
  2. Beniash E, Ivanina A, Lieb NS, Kurochkin I, Sokolova IM (2010) Elevated level of carbon dioxide affects metabolism and shell formation in oysters Crassostrea virginica. Mar Ecol Prog Ser 419:95–108. doi: 10.3354/meps08841 CrossRefGoogle Scholar
  3. Berntsson KM, Jonsson PR (2003) Temporal and spatial patterns in recruitment and succession of a temperate marine fouling assemblage: a comparison of static panels and boat hulls during the boating season. Biofouling 19:187–195. doi: 10.1080/0892701031000072091 Google Scholar
  4. Blackford JC, Gilbert FJ (2007) pH variability and CO2 induced acidification in the North Sea. J Mar Syst 64:229–241. doi: 10.1016/j.jmarsys.2006.03.016 CrossRefGoogle Scholar
  5. Bourget E (1987) Barnacle shells: composition, structure and growth. In: Southward AJ (ed) Barnacle biology. Balkema, The Netherlands, pp 267–286Google Scholar
  6. Brennand HS, Soars N, Dworjanyn SA, Davis AR, Byrne M (2010) Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla. PLoS ONE 5:e11372. doi: 10.1371/journal.pone.0011372 CrossRefGoogle Scholar
  7. Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365CrossRefGoogle Scholar
  8. Caldeira K, Wickett ME (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res 110:C09S04CrossRefGoogle Scholar
  9. Costlow JD (1956) Shell development in Balanus improvisus Darwin. Duke University Harine Laboratory, BeaufortGoogle Scholar
  10. Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929. doi: 10.1126/science.1156401 CrossRefGoogle Scholar
  11. Dickson AG (1990) Standard potential of the reaction—AgCls + 1/2Hg−2 = Ags + HClaq and the standard acidity constant of the ion HSO4− in synthetic sea-water from 273.15-K to 318.15-K. J Chem Thermodyn 22:113–127. doi: 10.1016/0021-9614(90)90074-z CrossRefGoogle Scholar
  12. Dickson AG, Millero FJ (1987) A comparison of the equilibrium-constants for the dissociation of carbonic-acid in seawater media. Deep Sea Res Part a Oceanogr Res Pap 34:1733–1743CrossRefGoogle Scholar
  13. Dickson AG, Afghan JD, Anderson GC (2003) Reference materials for oceanic CO2 analysis: a method for the certification of total alkalinity. Mar Chem 80:185–197. doi: 10.1016/s0304-4203(02)00133-0 CrossRefGoogle Scholar
  14. Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem annual review of marine science. Annual Reviews, Palo Alto, pp 169–192Google Scholar
  15. Dupont S, Ortega-Martinez O, Thorndyke M (2010) Impact of near-future ocean acidification on echinoderms. Ecotoxicology 19:449–462. doi: 10.1007/s10646-010-0463-6 CrossRefGoogle Scholar
  16. Dupont S, Dorey N, Stumpp M, Melzner F, Thorndyke M (2012) Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis. Mar Biol 1–9. doi: 10.1007/s00227-012-1921-x
  17. Dürr S, Wahl M (2004) Isolated and combined impacts of blue mussels (Mytilus edulis) and barnacles (Balanus improvisus) on structure and diversity of a fouling community. J Exp Mar Biol Ecol 306:181–195. doi: 10.1016/j.jembe.2004.01.006 CrossRefGoogle Scholar
  18. Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Okazaki R, Muehllehner N, Glas MS, Lough JM (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Change 1:165–169. doi: 10.1038/nclimate1122 CrossRefGoogle Scholar
  19. Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432. doi: 10.1093/icesjms/fsn048 CrossRefGoogle Scholar
  20. Feely RA, Sabine CL, Hernandez-Ayon JM, Ianson D, Hales B (2008) Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320:1490–1492CrossRefGoogle Scholar
  21. Feely RA, Alin SR, Newton J, Sabine CL, Warner M, Devol A, Krembs C, Maloy C (2010) The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuar Coast Shelf Sci 88:442–449. doi: 10.1016/j.ecss.2010.05.004 CrossRefGoogle Scholar
  22. Findlay HS, Kendall MA, Spicer JI, Widdicombe S (2009) Future high CO2 in the intertidal may compromise adult barnacle Semibalanus balanoides survival and embryonic development rate. Mar Ecol Prog Ser 389:193–202. doi: 10.3354/meps08141 CrossRefGoogle Scholar
  23. Findlay HS, Burrows MT, Kendall MA, Spicer JI, Widdicombe S (2010a) Can ocean acidification affect population dynamics of the barnacle Semibalanus balanoides at its southern range edge? Ecology 91:2931–2940. doi: 10.1890/09-1987.1 CrossRefGoogle Scholar
  24. Findlay HS, Kendall MA, Spicer JI, Widdicombe S (2010b) Relative influences of ocean acidification and temperature on intertidal barnacle post-larvae at the northern edge of their geographic distribution. Estuar Coast Shelf Sci 86:675–682. doi: 10.1016/j.ecss.2009.11.036 CrossRefGoogle Scholar
  25. Findlay HS, Kendall MA, Spicer JI, Widdicombe S (2010c) Post-larval development of two intertidal barnacles at elevated CO2 and temperature. Mar Biol 157:725–735. doi: 10.1007/s00227-009-1356-1 CrossRefGoogle Scholar
  26. Gattuso J-P, Hansson L (2011) Ocean acidification. University Press Oxford, OxfordGoogle Scholar
  27. Gutowska M, Melzner F, Pörtner HO, Meier S (2010) Cuttlebone calcification increases during exposure to elevated seawater pCO2 in the cephalopod Sepia officinalis. Mar Biol 157:1653–1663CrossRefGoogle Scholar
  28. Hale R, Calosi P, McNeill L, Mieszkowska N, Widdicombe S (2011) Predicted levels of future ocean acidification and temperature rise could alter community structure and biodiversity in marine benthic communities. Oikos 120:661–674. doi: 10.1111/j.1600-0706.2010.19469.x CrossRefGoogle Scholar
  29. Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner SM, Rowley SJ, Tedesco D, Buia MC (2008) Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454:96–99CrossRefGoogle Scholar
  30. IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  31. Jarrett JN (2003) Seasonal variation in larval condition and postsettlement performance of the barnacle Semibalanus balanoides. Ecology 84:384–390. doi: 10.1890/0012-9658(2003)084[0384:svilca];2 CrossRefGoogle Scholar
  32. Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13:1419–1434. doi: 10.1111/j.1461-0248.2010.01518.x CrossRefGoogle Scholar
  33. Kurihara H (2008) Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar Ecol Prog Ser 373:275–284CrossRefGoogle Scholar
  34. McDonald MR, McClintock JB, Amsler CD, Rittschof D, Angus RA, Orihuela B, Lutostanski K (2009) Effects of ocean acidification over the life history of the barnacle Amphibalanus amphitrite. Mar Ecol Prog Ser 385:179–187. doi: 10.3354/meps08099 CrossRefGoogle Scholar
  35. Mehrbach C, Culberso CH, Hawley JE, Pytkowic RM (1973) Measurement of apparent dissociation-constants of carbonic-acid in seawater at atmospheric-pressure. Limnol Oceanogr 18:897–907CrossRefGoogle Scholar
  36. Meier HEM (2006) Baltic Sea climate in the late twenty-first century: a dynamical downscaling approach using two global models and two emission scenarios. Clim Dyn 27:39–68. doi: 10.1007/s00382-006-0124-x CrossRefGoogle Scholar
  37. Melzner F, Gutowska MA, Langenbuch M, Dupont S, Lucassen M, Thorndyke MC, Bleich M, Pörtner HO (2009) Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences 6:2313–2331CrossRefGoogle Scholar
  38. Melzner F, Thomsen J, Koeve W, Oschlies A, Gutowska M, Bange H, Hansen H, Körtzinger A (2012) Future ocean acidification will be amplified by hypoxia in coastal habitats. Mar Biol 1–14. doi: 10.1007/s00227-012-1954-1
  39. Miller AW, Reynolds AC, Sobrino C, Riedel GF (2009) Shellfish face uncertain future in high CO2 world: influence of acidification on oyster larvae calcification and growth in estuaries. PLoS ONE 4:e5661. doi: 10.1371/journal.pone.0005661 CrossRefGoogle Scholar
  40. Nasrolahi A, Sari A, Saifabadi S, Malek M (2007) Effects of algal diet on larval survival and growth of the barnacle Amphibalanus (=Balanus) improvisus. J Mar Biol Assoc UK 87:1227–1233. doi: 10.1017/s0025315407057037 CrossRefGoogle Scholar
  41. Nasrolahi A, Pansch C, Lenz M, Wahl M (2012) Being young in a changing world: how temperature and salinity changes interactively modify the performance of larval stages of the barnacle Amphibalanus improvisus. Mar Biol 159:331–340. doi: 10.1007/s00227-011-1811-7 CrossRefGoogle Scholar
  42. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686CrossRefGoogle Scholar
  43. Pansch C, Nasrolahi A, Appelhans YS, Wahl M (2012) Impacts of ocean warming and acidification on the larval development of the barnacle Amphibalanus improvisus. J Exp Mar Biol Ecol 420–421:48–55. doi: 10.1016/j.jembe.2012.03.023 CrossRefGoogle Scholar
  44. Pierrot D, Lewis E, Wallace DWR (2006) MS Excel program developed for CO2 system calculations. Macro for low salinities. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak RidgeGoogle Scholar
  45. Pörtner HO (2008) Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Mar Ecol Prog Ser 373:203–217. doi: 10.3354/meps07768 CrossRefGoogle Scholar
  46. Pörtner HO (2010) Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J Exp Biol 213:881–893. doi: 10.1242/jeb.037523 CrossRefGoogle Scholar
  47. Pörtner HO, Farrell AP (2008) Ecology physiology and climate change. Science 322:690–692. doi: 10.1126/science.1163156 CrossRefGoogle Scholar
  48. Rabalais NN, Turner RE, Wiseman WJ (2002) Gulf of Mexico hypoxia, aka “The dead zone”. Annu Rev Ecol Syst 33:235–263. doi: 10.1146/annurev.ecolsys.33.010802.150513 CrossRefGoogle Scholar
  49. Range P, Chicharo MA, Ben-Hamadou R, Pilo D, Matias D, Joaquim S, Oliveira AP, Chicharo L (2011) Calcification, growth and mortality of juvenile clams Ruditapes decussatus under increased pCO2 and reduced pH: variable responses to ocean acidification at local scales? J Exp Mar Biol Ecol 396:177–184. doi: 10.1016/j.jembe.2010.10.020 CrossRefGoogle Scholar
  50. Riebesell U (2008) Climate change—acid test for marine biodiversity. Nature 454:46–47. doi: 10.1038/454046a CrossRefGoogle Scholar
  51. Ries JB, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37:1131–1134CrossRefGoogle Scholar
  52. Rodolfo-Metalpa R, Houlbreque F, Tambutte E, Boisson F, Baggini C, Patti FP, Jeffree R, Fine M, Foggo A, Gattuso JP, Hall-Spencer JM (2011) Coral and mollusc resistance to ocean acidification adversely affected by warming. Nat Clim Change 1:308–312. doi: 10.1038/nclimate1200 CrossRefGoogle Scholar
  53. Salisbury J, Green M, Hunt C, Campbell J (2008) Coastal acidification by rivers: A threat to shellfish? Eos Trans AGU 89. doi: 10.1029/2008eo500001
  54. Sanford E, Menge BA (2001) Spatial and temporal variation in barnacle growth in a coastal upwelling system. Mar Ecol Prog Ser 209:143–157. doi: 10.3354/meps209143 CrossRefGoogle Scholar
  55. Shim J, Kim D, Kang YC, Lee JH, Jang ST, Kim CH (2007) Seasonal variations in pCO2 and its controlling factors in surface seawater of the northern East China Sea. Cont Shelf Res 27:2623–2636. doi: 10.1016/j.csr.2007.07.005 CrossRefGoogle Scholar
  56. Skinner LF, Siviero FN, Coutinho R (2007) Comparative growth of the intertidal barnacle Tetraclita stalactifera (Thoracica : Tetraclitidae) in sites influenced by upwelling and tropical conditions at the Cabo Frio region, Brazil. Rev Biol Trop 55:71–77Google Scholar
  57. The BACC Author Team (2008) Assessment of climate change for the Baltic Sea Basin. Springer, BerlinGoogle Scholar
  58. Thiyagarajan V, Harder T, Qian PY (2002) Effect of the physiological condition of cyprids and laboratory-mimicked seasonal conditions on the metamorphic successes of Balanus amphitrite Darwin (Cirripedia; Thoracica). J Exp Mar Biol Ecol 274:65–74. doi: 10.1016/s0022-0981(02)00182-x CrossRefGoogle Scholar
  59. Thiyagarajan V, Hung OS, Chiu JMY, Wu RSS, Qian PY (2005) Growth and survival of juvenile barnacle Balanus amphitrite: interactive effects of cyprid energy reserve and habitat. Mar Ecol Prog Ser 299:229–237. doi: 10.3354/meps299229 CrossRefGoogle Scholar
  60. Thiyagarajan V, Pechenik JA, Gosselin LA, Qian PY (2007) Juvenile growth in barnacles: combined effect of delayed metamorphosis and sub-lethal exposure of cyprids to low-salinity stress. Mar Ecol Prog Ser 344:173–184. doi: 10.3354/meps06931 CrossRefGoogle Scholar
  61. Thomsen J, Gutowska M, Saphörster J, Heinemann A, Trübenbach K, Fietzke J, Hiebenthal C, Eisenhauer A, Körtzinger A, Wahl M, Melzner F (2010) Calcifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification. Biogeosciences 7:3879–3891CrossRefGoogle Scholar
  62. Urban MC (2007) The growth-predation risk trade-off under a growing gape-limited predation threat. Ecology 88:2587–2597. doi: 10.1890/06-1946.1 CrossRefGoogle Scholar
  63. Wahl M, Shahnaz L, Dobretsov S, Saha M, Symanowski F, David K, Lachnit T, Vasel M, Weinberger F (2010) Ecology of antifouling resistance in the bladder wrack Fucus vesiculosus: patterns of microfouling and antimicrobial protection. Mar Ecol Prog Ser 411:33–48. doi: 10.3354/Meps08644 CrossRefGoogle Scholar
  64. Waldbusser GG (2011) The causes of acidification in Chesapeake Bay and consequences to oyster shell growth and dissolution. J Shellfish Res 30:559–560CrossRefGoogle Scholar
  65. Walther K, Anger K, Pörtner HO (2010) Effects of ocean acidification and warming on the larval development of the spider crab Hyas araneus from different latitudes (54 degrees vs. 79 degrees N). Mar Ecol Prog Ser 417:159–170. doi: 10.3354/meps08807 CrossRefGoogle Scholar
  66. Whiteley NM (2011) Physiological and ecological responses of crustaceans to ocean acidification. Mar Ecol Prog Ser 430:257–271. doi: 10.3354/meps09185 CrossRefGoogle Scholar
  67. Wong KKW, Lane AC, Leung PTY, Thiyagarajan V (2011) Response of larval barnacle proteome to CO2-driven seawater acidification. Comp Biochem Physiol D Genomics Proteomics 6:310–321. doi: 10.1016/j.cbd.2011.07.001 CrossRefGoogle Scholar
  68. Wood HL, Spicer J, Widdicombe S (2008) Ocean acidification may increase calcification rates, but at a cost. Proc R Soc 275:1767–1773CrossRefGoogle Scholar
  69. Wootton JT, Pfister CA, Forester JD (2008) Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset. Proc Natl Acad Sci U S A 105:18848–18853. doi: 10.1073/pnas.0810079105 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Christian Pansch
    • 1
  • Ali Nasrolahi
    • 1
  • Yasmin Shirin Appelhans
    • 1
  • Martin Wahl
    • 1
  1. 1.Department of Marine EcologyGEOMAR—Helmholtz Centre for Ocean Research KielKielGermany

Personalised recommendations