Marine Biology

, Volume 160, Issue 1, pp 27–35 | Cite as

Effects of seawater temperature and pH on the boring rates of the sponge Cliona celata in scallop shells

  • Alan R. DuckworthEmail author
  • Bradley J. Peterson
Original Paper


Warmer, more acidic water resulting from greenhouse gas emissions could influence ecosystem processes like bioerosion of calcifying organisms. Based on summer-maxima values (temperature = 26 °C; pH = 8.1) at a collection site in New York (40°56″ N, 72°30″ W), explants of the boring sponge Cliona celata Grant, 1826 were grown for 133 days on scallop shells in seawater ranging from current values to one scenario predicted for the year 2100 (T = 31 °C; pH = 7.8). High water temperature had little effect on sponge growth, survival, or boring rates. Lower pH slightly reduced sponge survival, while greatly influencing shell boring. At pH = 7.8, sponges bored twice the number of papillar holes and removed two times more shell weight than at pH = 8.1. Greater erosion resulted in weaker scallop shells. This study suggests that lower seawater pH may increase boring rates of C. celata in shellfish, with potentially severe implications for wild and farmed shellfish populations.


Sponge Attachment Rate Scallop Shell Shell Weight Water Chemistry Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Tom Behling for experimental help and Shirley Pomponi, Brad Furman, Amber Stubler, John Carroll and anonymous reviewers for their helpful comments. This study was partially funded by Blue Ocean Institute.


  1. Andersson AJ, Mackenzie FT (2012) Revisiting four scientific debates in ocean acidification research. Biogeosciences 9:893–905CrossRefGoogle Scholar
  2. Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Nat Acad Sci USA 105:17422–17446Google Scholar
  3. Bergquist PR (1978) Sponges. University of California Press, BerkeleyGoogle Scholar
  4. Breuer E, Sañudo-Wilhelmy SA, Aller RC (1999) Trace metals and dissolved organic carbon in an estuary with restricted river flow and a brown tide bloom. Estuaries 22:603–615CrossRefGoogle Scholar
  5. Carballo JL, Naranjo SA, Garcia-Gómez JC (1996) Use of marine sponges as stress indicators in marine ecosystems at Algeciras Bay (southern Iberian Peninsula). Mar Ecol Prog Ser 135:109–122CrossRefGoogle Scholar
  6. Carver CE, Thériault I, Mallet AL (2010) Infection of cultured eastern oysters Crassostrea virginica by the boring sponge Cliona celata, with emphasis on sponge life history and mitigation strategies. J Shellfish Res 29:905–915CrossRefGoogle Scholar
  7. Cobb WR (1975) Fine structural features of destruction of calcareous substrata by the burrowing sponge Cliona celata. Trans Am Microsc Soc 94:197–202CrossRefGoogle Scholar
  8. Daume S, Fromont J, Hart A (2009) Management of bioeroding sponges in wild stocks of Pinctada maxima in Western Australia. Fisheries research report No. 196. Department of fisheries, Western AustraliaGoogle Scholar
  9. Daume S, Fromont J, Parker F, Davidson M, Murphy D, Hart A (2010) Quantifying sponge erosions in Western Australian pearl oyster shells. Aquac Res 41:260–267CrossRefGoogle Scholar
  10. de Nys R, Ison O (2008) Biofouling. In: Southgate P, Lucas J (eds) The pearl oyster. Elsevier, Oxford, pp 527–551CrossRefGoogle Scholar
  11. de Paula TS, Zilberberg C, Hajdu E, Lôbo-Hajdu G (2012) Morphology and molecules on opposite sides of the diversity gradient: four cryptic species of the Cliona celata (Porifera, Demospongiae) complex in South America revealed by mitochondrial and nuclear markers. Mol Phylogenet Evol 62:529–541CrossRefGoogle Scholar
  12. Duckworth AR, Battershill CN (2001) Population dynamics and chemical ecology of New Zealand Demospongiae Latrunculia sp. nov. and Polymastia croceus (Poecilosclerida: Latrunculiidae: Polymastiidae). NZ J Mar Freshwat Res 35:935–949CrossRefGoogle Scholar
  13. Duckworth AR, Battershill CN (2003) Developing farming structures for production of biologically active sponge metabolites. Aquaculture 217:139–156CrossRefGoogle Scholar
  14. Duckworth AR, West L, Vansach T, Stubler A, Hardt M (2012) Effects of water temperature and pH on growth and metabolite biosynthesis of coral reef sponges. Mar Ecol Prog Ser 462:67–77CrossRefGoogle Scholar
  15. Emson RH (1966) The reactions of the sponge Cliona celata to applied stimuli. Comp Biochem Physiol 18:805–827CrossRefGoogle Scholar
  16. Evans JW (1969) Borers in the shell of the sea scallop, Placopecten magellanicus. Am Zool 9:775–782Google Scholar
  17. Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432CrossRefGoogle Scholar
  18. Fay CW, Neves RJ, Pardue GP (1983) Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (Mid-Atlantic)—bay scallop. U.S. fish and wildlife service, division of biological services, FWS/OBS-82/11.12. US Army Corp of Engineers, TR EL-82-4Google Scholar
  19. Fell PE, Parry EH, Balsamo AM (1984) The life histories of sponges in the Mystic and Thames estuaries (Connecticut), with emphasis on larval settlement and post larval reproduction. J Exp Mar Biol Ecol 78:127–141CrossRefGoogle Scholar
  20. Glynn PW (1997) Bioerosion and coral reef growth: a dynamic balance. In: Birkeland C (ed) Life and death on coral reefs. Chapman and Hall, New York, pp 68–95CrossRefGoogle Scholar
  21. Grant RE (1826) Notice of a new zoophyte (Cliona celata Gr.) from the firth of forth. Edinb New Philos J 1:78–81Google Scholar
  22. Guinotte JM, Fabry VJ (2008) Ocean acidification and its potential effects on marine ecosystems. Ann N Y Acad Sci 1134:320–342CrossRefGoogle Scholar
  23. Hartman WD (1958) Natural history of the marine sponges of southern New England. Bull Peabody Mus Nat Hist 12:1–155Google Scholar
  24. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742CrossRefGoogle Scholar
  25. Hoeksema BW (1983) Excavation patterns and spiculae dimensions of the boring sponge Cliona celata from the SW Netherlands. Senckenb Marit 15:55–85Google Scholar
  26. Hutchings PA (1986) Biological destruction of coral reefs. Coral Reefs 4:239–252CrossRefGoogle Scholar
  27. Kaehler S, McQuaid CD (1999) Lethal and sub-lethal effects of phototrophic endoliths attacking the shell of the intertidal mussel Perna perna. Mar Biol 135:497–503CrossRefGoogle Scholar
  28. Kiessling W, Simpson C (2011) On the potential for ocean acidification to be a general cause of ancient reef crises. Glob Change Biol 17:56–67CrossRefGoogle Scholar
  29. Koopmans M, Wijffels RH (2008) Seasonal growth rate of the sponge Haliclona oculata (Demospongiae: Haplosclerida). Mar Biotechnol 10:502–510CrossRefGoogle Scholar
  30. Maldonado M, Giraud K, Carmona C (2008) Effects of sediment on the survival of asexually produced sponge recruits. Mar Biol 154:631–641CrossRefGoogle Scholar
  31. Mallela J, Perry CT (2007) Calcium carbonate budgets for two coral reefs affected by different runoff regimes, Rio Bueno, Jamaica. Coral Reefs 26:129–145CrossRefGoogle Scholar
  32. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  33. Nicol WL, Reisman HM (1976) Ecology of the boring sponge (Cliona celata) at Gardiner’s Island, New York. Chesap Sci 17:1–7CrossRefGoogle Scholar
  34. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner G-K, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig M-F, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686CrossRefGoogle Scholar
  35. Pawlik JR, McMurray SE, Henkel TP (2007) Abiotic factors control sponge ecology in Florida mangroves. Mar Ecol Prog Ser 339:93–98CrossRefGoogle Scholar
  36. Piscitelli M, Corriero G, Gaino E, Uriz MJ (2011) Reproductive cycles of the sympatric excavating sponges Cliona celata and Cliona viridis in the Mediterranean Sea. Invertebr Biol 130:1–10CrossRefGoogle Scholar
  37. Pomponi SA (1980) Cytological mechanisms of calcium carbonate excavation by boring sponges. Int Rev Cytol 65:301–319CrossRefGoogle Scholar
  38. Pomponi SA, Meritt DW (1990) Distribution and life history of the boring sponge Cliona truitti in the upper Chesapeake bay. In: Rützler K (ed) New perspectives in sponge biology. Smithsonian Institution Press, Washington, D.C., pp 384–390Google Scholar
  39. Przeslawski R, Ahyong S, Byrne M, Wörheide G, Hutchings PAT (2008) Beyond corals and fish: the effects of climate change on noncoral benthic invertebrates of tropical reefs. Glob Change Biol 14:2773–2795CrossRefGoogle Scholar
  40. Reis MAC, Ledo ZMAN (2000) Bioerosion rate of the sponge Cliona celata (Grant 1826) from reefs in turbid waters, north Bahia, Brazil. In: Moosa MK, Soemodihardjo S, Soegiarto A, Romimohtarto K, Nontji A, Soekarno, Suharsono (eds) Proceedings 9th international coral reef symposium, Bali, Indonesia Vol. 1, pp 273–278Google Scholar
  41. Riebesell U, Fabry VJ, Hansson L, Gattuso J-P (2010) Guide to best practices for ocean acidification research and data reporting. Publications Office of the European Union, LuxembourgGoogle Scholar
  42. Rosell D, Uriz MJ (1992) Do associated zooxanthellae and the nature of the substratum affect survival, attachment and growth of Cliona viridis (Porifera: Hadromerida)? An experimental approach. Mar Biol 114:503–507CrossRefGoogle Scholar
  43. Rosell D, Uriz MJ, Martin D (1999) Infestation by excavating sponges on the oyster (Ostrea edulis) populations of the Blanes littoral zone (north-western Mediterranean Sea). J Mar Biol Assoc UK 79:409–413CrossRefGoogle Scholar
  44. Rützler K (2002) Impact of crustose clionid sponges on Caribbean reef corals. Acta Geologica Hispanica 37:61–72Google Scholar
  45. Rützler K, Rieger G (1973) Sponge burrowing: fine structure of Cliona lampa penetrating calcareous substrata. Mar Biol 21:144–162CrossRefGoogle Scholar
  46. Schönberg CHL (2002) Substrate effects on the bioeroding sponge Cliona orientalis. 1. Bioerosion rates. P.S.Z.N. Mar Ecol 23:313–326CrossRefGoogle Scholar
  47. Schönberg CHL (2008) A history of sponge erosion: from past myths and hypotheses to recent approaches. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, pp 165–202CrossRefGoogle Scholar
  48. Schönberg CHL, Ortiz JC (2008) Is sponge bioerosion increasing? In: Proceedings of the 11th international coral reef symposium, Ft. Lauderdale, Florida. Vol 1, pp 527–530Google Scholar
  49. Simpson TL (1968) The biology of the marine sponge Microciona prolifera (Ellis and Solander) II. Temperature-related, annual changes in functional and reproductive elements with a description of larval metamorphosis. J Exp Mar Biol Ecol 2:252–277CrossRefGoogle Scholar
  50. Stefaniak LM, McAtee J, Shulman MJ (2005) The costs of being bored: effects of a clionid sponge on the gastropod Littorina littorea (L). J Exp Mar Biol Ecol 327:103–114CrossRefGoogle Scholar
  51. Talmage SC, Gobler CJ (2010) Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish. Proc Nat Acad Sci USA 107:17246–17251CrossRefGoogle Scholar
  52. Turner JT (1982) The annual cycle of zooplankton in a long Island estuary. Estuaries 5:261–274CrossRefGoogle Scholar
  53. Turon X, Tarjuelo I, Uriz MJ (1998) Growth dynamics and mortality of the encrusting sponge Crambe crambe (Poecilosclerida) in contrasting habitats: correlation with population structure and investment in defence. Funct Ecol 12:631–639CrossRefGoogle Scholar
  54. Van Soest RWM (2011) Cliona celata Grant, 1826. In: Van Soest RWM, Boury-Esnault N, Hooper JNA, Rützler K, de Voogd NJ, Alvarez de Glasby B, Hajdu E, Pisera AB, Manconi R, Schönberg C, Janussen D, Tabachnick KR, Klautau M, Picton B, Kelly M (eds) World porifera database. Available at
  55. Warburton EF (1958) The manner in which the sponge Cliona bores in calcareous objects. Can J Zool 36:555–562CrossRefGoogle Scholar
  56. Wells HW, Wells MJ, Gray IE (1964) Ecology of sponges in Hatteras harbor, North Carolina. Ecology 45:752–766CrossRefGoogle Scholar
  57. Xavier JR, Rachello-Dolmen PG, Parra-Velandia F, Schönberg CHL, Breeuwer JAJ, van Soest RWM (2010) Molecular evidence of cryptic speciation in the ‘‘cosmopolitan’’ excavating sponge Cliona celata (Porifera, Clionaidae). Mol Phylogenet Evol 56:13–20CrossRefGoogle Scholar
  58. Zar JH (1999) Biostatistical analysis. Prentice Hall, New JerseyGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Blue Ocean InstituteStony Brook UniversityStony BrookUSA
  2. 2.School of Marine and Atmospheric SciencesStony Brook UniversityStony BrookUSA
  3. 3.Australian Institute of Marine ScienceTownsvilleAustralia

Personalised recommendations