Marine Biology

, Volume 160, Issue 8, pp 1943–1953 | Cite as

Tolerance of Hyas araneus zoea I larvae to elevated seawater PCO2 despite elevated metabolic costs

  • Melanie Schiffer
  • Lars Harms
  • Hans O. Pörtner
  • Magnus Lucassen
  • Felix C. Mark
  • Daniela Storch
Original Paper


Early life stages of marine crustaceans respond sensitively to elevated seawater PCO2. However, the underlying physiological mechanisms have not been studied well. We therefore investigated the effects of elevated seawater PCO2 on oxygen consumption, dry weight, elemental composition, median developmental time (MDT) and mortality in zoea I larvae of the spider crab Hyas araneus (Svalbard 79°N/11°E; collection, May 2009; hatch, December 2009). At the time of moulting, oxygen consumption rate had reached a steady state level under control conditions. In contrast, elevated seawater PCO2 caused the metabolic rate to rise continuously leading to a maximum 1.5-fold increase beyond control level a few days before moulting into the second stage (zoea II), followed by a pronounced decrease. Dry weight of larvae reared under high CO2 conditions was lower than in control larvae at the beginning of the moult cycle, yet this difference had disappeared at the time of moulting. MDT of zoea I varied between 45 ± 1 days under control conditions and 42 ± 2 days under the highest seawater CO2 concentration. The present study indicates that larval development under elevated seawater PCO2 levels results in higher metabolic costs during premoulting events in zoea I. However, H. araneus zoea I larvae seem to be able to compensate for higher metabolic costs as larval MDT and survival was not affected by elevated PCO2 levels.


Dissolve Inorganic Carbon Oxygen Consumption Rate Ocean Acidification Elevated PCO2 Moult Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support was provided by Federal Ministry of Education and Research (BMBF), within phase I of the BIOACID research programme (FKZ 03F0608B, subproject 2.2.1). We thank the scientific divers of the Alfred Wegener Institute for animal collection and C. Lorenzen for technical assistance.


  1. Anger K (1983) Moult cycle and morphogenesis in Hyas araneus larvae (Decapoda, Majidae), reared in laboratory. Helgol Meeresunters 36:285–302CrossRefGoogle Scholar
  2. Anger K (2001) The biology of decapod crustacean larvae. Crustacean Issue 14. A.A. Balkema Publishers, Swets and Zeitlinger, LisseGoogle Scholar
  3. Anger K (2003) Salinity as a key parameter in the larval biology of decapod crustaceans. Invertebr Reprod Dev 43(1):29–45CrossRefGoogle Scholar
  4. Anger K, Dawirs RR (1981) Influence of starvation on the larval development of Hyas araneus (Decapoda, Majidae). Helgol Meeresunters 34:287–311CrossRefGoogle Scholar
  5. Anger K, Dawirs RR (1982) Elemental composition (C, N, H) and energy in growing and starving larvae of Hyas araneus (Decapoda, Majidae). Fish Bull NOAA 80:419–433Google Scholar
  6. Anger K, Jacobi CC (1985) Respiration and growth of Hyas araneus L. larvae (Decapoda: Majidae) from hatching to metamorphosis. J Exp Mar Biol Ecol 88:257–270CrossRefGoogle Scholar
  7. Anger K, Harms J, Püschel C, Seeger B (1989) Physiological and biochemical changes during larval development of a brachyuran crab reared under constant conditions in the laboratory. Helgol Meeresunters 43:225–244CrossRefGoogle Scholar
  8. Anger K, Spivak E, Luppi T (1998) Effects of reduced salinities on development and bioenergetics of early larval shore crab, Carcinus maenas. J Exp Mar Biol Ecol 220:287–304CrossRefGoogle Scholar
  9. Anger K, Thatje S, Lovrich G, Calcagno J (2003) Larval and early juvenile development of Paralomis granulosa reared at different temperatures: tolerance of cold and food limitation in a lithodid crab from high latitudes. Mar Ecol Prog Ser 253:243–251CrossRefGoogle Scholar
  10. Arnold KE, Findlay HS, Spicer JI, Daniels CL, Boothroyd D (2009) Effect of CO2-related acidification on aspects of the larval development of the European lobster, Homarus gammarus (L.). Biogeosciences 6:1747–1754CrossRefGoogle Scholar
  11. Bechmann RK, Taban IC, Westerlund S, Godal BF, Arnberg M, Vingen S, Ingvarsdottir A, Baussant T (2011) Effects of Ocean acidification on early life stages of shrimp (Pandalus borealis) and mussel (Mytilus edulis). J Toxicol Environ Health Part A 74:424–438CrossRefGoogle Scholar
  12. Cameron JN (1978) Effects of hypercapnia on blood acid-base status, NaCl fluxes, and trans-gill potential in freshwater blue crabs, Callinectes sapidus. J Comp Physiol 123:137–141Google Scholar
  13. Christiansen ME (1969) Crustacea Decapoda Brachyura. Marine invertebrates of Scandinavia, vol 2. Universitetsforlaget, OsloGoogle Scholar
  14. Dawirs RR (1983) Respiration, energy balance and development during growth and starvation of Carcinus maenas L. larvae (Decapoda: Portunidae). J Exp Mar Biol Ecol 69:105–128CrossRefGoogle Scholar
  15. Dissanayake A, Clough R, Spicer JI, Jones MB (2010) Effects of hypercapnia on acid–base balance and osmo/ionoregulation in prawns (Decapod: Palaemonidae). Aquat Biol 11:27–36CrossRefGoogle Scholar
  16. Drach P (1939) Mue et cycle d’intermue chez les Crustacés decapodés. Annls Institut Océanographique, Monaco 19:103–391Google Scholar
  17. Dupont S, Dorey N, Stumpp M, Melzner F, Thorndyke M (2012) Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis. Mar Biol. doi: 10.1007/s00227-012-1921-x Google Scholar
  18. Findlay HS, Kendall MA, Spicer JI, Widdicombe S (2010) Relative influence of ocean acidification and temperature on intertidal post-larvae at the northern edge of their geographic distribution. Estuar Coast Shelf Sci 86:675–682CrossRefGoogle Scholar
  19. Hop H, Pearson T, Hegseth EN, Kovacs KM et al (2002) The marine ecosystem of Kongsfjorden, Svalbard. Polar Res 21:167–208CrossRefGoogle Scholar
  20. Jacobi CC, Anger K (1985) Effect of temperature on respiration of larval stages of Hyas araneus and H. coarctatus (Decapoda, Majidae). Mar Ecol Prog Ser 26:181–186CrossRefGoogle Scholar
  21. Kurihara H, Ishimatsu A (2008) Effects of high CO2 seawater on the copepod (Acartia tsuensis) through all life stages and subsequent generations. Mar Pollut Bull 56(6):1086–1090CrossRefGoogle Scholar
  22. Kurihara H, Shimode S, Shirayama Y (2004) Effects of raised CO2 concentration on the egg production rate and early development of two marine copepods (Acartia steueri and Acartia erythraea). Mar Pollut Bull 49:721–727CrossRefGoogle Scholar
  23. Landry MR (1983) The development of marine calanoid copepods with comment on the isochronal rule. Limnol Oceanogr 28:614–624CrossRefGoogle Scholar
  24. Langenbuch M, Pörtner HO (2003) Energy budget of hepatocytes from Antarctic fish (Pachycara brachycephalum and Lepidonotothen kempi) as a function of ambient CO2: pH-dependent limitations of cellular protein biosynthese? J Exp Biol 206:3895–3903CrossRefGoogle Scholar
  25. Langenbuch M, Bock C, Leibfritz D, Pörtner HO (2006) Effects of environmental hypercapnia on animal physiology: a (31) P-NMR study of protein synthesis rates in the marine invertebrate Sipunculus nudus. Comp Biochem Physiol A 144:479–484CrossRefGoogle Scholar
  26. Lannig G, Eilers S, Pörtner HO, Sokolova IM, Bock C (2010) Impact of Ocean acidification on energy metabolism of Oyster, Crassostrea gigas—Changes in metabolic pathways and thermal response. Mar Drugs 8:2318–2339CrossRefGoogle Scholar
  27. Lewis E, Wallace DWR (1998) Program developed for CO2 system calculations. ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TNGoogle Scholar
  28. Lischka S, Büdenbender J, Boxhammer T, Riebesell U (2010) Impact of ocean acidification and elevated temperatures on early juveniles of the polar shelled pteropod Limacina helicina: mortality, shell degradation, and shell growth. Biogeosci Discuss 7:8177–8214CrossRefGoogle Scholar
  29. Luquet CM, Ansaldo M (1997) Acid-base balance and ion regulation during emersion in estuarine intertidal crab Chasmagnathus granulata Dana (Decapoda Grapsidea). Comp Biochem Phys A 3:407–410CrossRefGoogle Scholar
  30. Martin S, Richier S, Pedrotti ML, Dupont S, Castejon C, Gerakis Y, Kerros ME, Oberhänsli F, Teyssié JL, Jeffree R, Gattuso JP (2011) Early development and molecular plasticity in the Mediterranean sea urchin Paracentrotus lividus exposed to CO2-driven acidification. J Exp Biol 214:1357–1368CrossRefGoogle Scholar
  31. Melzner F, Gutowska MA, Langenbuch M, Dupont S, Lucassen M, Thorndyke MC, Bleich M, Pörtner HO (2009) Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences 6:2313–2331CrossRefGoogle Scholar
  32. Michaelidis B, Ouzounis C, Paleras A, Pörtner HO (2005) Effects of long-term moderate hypercapnia on acid–base balance and growth rate in marine mussels Mytilus galloprovincialis. Mar Ecol Prog Ser 293:109–118CrossRefGoogle Scholar
  33. Noack S (1980) Statistische Auswertung von Mess- und Versuchsdaten mit Taschenrechner und Tischcomputer. Walter de Gruyter, BerlinCrossRefGoogle Scholar
  34. Pane EF, Barry JP (2007) Extracellular acid-base regulation during short-term hypercapnia is effective in a shallow-water crab, but ineffective in a deep-sea crab. Mar Ecol Prog Ser 334:1–9CrossRefGoogle Scholar
  35. Petersen S (1995) The embryonic development of Hyas araneus L. (Decapoda, Majidae): effects of temperature. Sarsia 80:193–198Google Scholar
  36. Pörtner HO, Hardewig I, Sartoris FJ, van Dijk PLM (1998) Energetic aspects of cold adaptation: critical temperatures in metabolic, ionic and acid–base regulation? In: Pörtner HO, Playle R (eds) Cold ocean physiology. Cambridge University Press, Cambridge, pp 88–120CrossRefGoogle Scholar
  37. Pörtner HO, Bock C, Reipschläger A (2000) Modulation of the cost of pHi regulation during metabolic depression: a 31P-NMR study in invertebrate (Sipunculus nudus) isolated muscle. J Exp Biol 203:2417–2428Google Scholar
  38. Pörtner HO, Dupont S, Melzner F, Storch D, Thorndyke M (2010) Studies of metabolic rate and other characters across life stages. In: Riebesell U, Fabry V, Gattuso JP (eds) Guide to best practices for ocean acidification research and data reporting. Publications Office of the European Union, Luxembourg, pp 167–180Google Scholar
  39. Reipschläger A, Pörtner HO (1996) Metabolic depression during environmental stress: the role of extracellular versus intracellular pH in Sipunculus nudus. J Exp Biol 199:1801–1807Google Scholar
  40. Spicer JI, Eriksson SP (2003) Does the development of respiratory regulation always accompany the transition from pelagic larvae to benthic fossorial postlarvae in the Norway lobster Nephrops norvegicus (L.)? J Exp Mar Biol Ecol 295:219–243CrossRefGoogle Scholar
  41. Spicer JI, Raffo A, Widdicombe S (2007) Influence of CO2-related seawater acidification on extracellular acid–base balance in the velvet swimming crab Necora puber. Mar Biol 151:1117–1125CrossRefGoogle Scholar
  42. Steinacher M, Joos F, Frölicher TL, Plattner G-K, Doney SC (2009) Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences 6:515–533CrossRefGoogle Scholar
  43. Storch D, Santelices P, Barria J, Cabeza K, Pörtner HO, Fernández M (2009) Thermal tolerance of crustacean larvae (zoea I) in two different populations of the kelp crab Taliepus dentatus (Milne-Edwards). J Exp Biol 212:1371–1376CrossRefGoogle Scholar
  44. Stumpp M, Wren J, Melzner F, Thorndyke MC, Dupont S (2011) CO2 induced seawater acidification impacts sea urchin larval development I: elevated metabolic rates decrease scope for growth and induce developmental delay. Comp Biochem Phys A 160(3):331–340Google Scholar
  45. Thomsen J, Melzner F (2010) Moderate seawater acidification does not elicit long-term metabolic depression in the blue mussel Mytilus edulis. Mar Biol 157:2667–2676CrossRefGoogle Scholar
  46. Varley DG, Greenaway P (1992) The effect of emersion on haemolymph acid-base balance and oxygen levels in Scylla serrata Forskal (Brachyura: Portunidae). J Exp Mar Biol Ecol 163(1):1–12CrossRefGoogle Scholar
  47. Walther K, Anger K, Pörtner HO (2010) Effects of ocean acidification and warming on the larval development of the spider crab Hyas araneus from different latitudes (54° vs. 79°N). Mar Ecol Prog Ser 417:159–170CrossRefGoogle Scholar
  48. Walther K, Sartoris FJ, Pörtner HO (2011) Impacts of temperature and acidification on larval calcium incorporation of the spider crab Hyas araneus from different latitudes (54° vs. 79°N). Mar Biol 158:2043–2053. doi: 10.1007/s00227-011-1711-x CrossRefGoogle Scholar
  49. Wheatly M, Henry RP (1992) Extracellular and intracellular acid-base regulation in crustaceans. J Exp Zool 263(2):127–142CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Melanie Schiffer
    • 1
  • Lars Harms
    • 1
  • Hans O. Pörtner
    • 1
  • Magnus Lucassen
    • 1
  • Felix C. Mark
    • 1
  • Daniela Storch
    • 1
  1. 1.Department Integrative EcophysiologyAlfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany

Personalised recommendations