Advertisement

Marine Biology

, Volume 159, Issue 9, pp 1997–2013 | Cite as

Assessment of AHS (Airborne Hyperspectral Scanner) sensor to map macroalgal communities on the Ría de vigo and Ría de Aldán coast (NW Spain)

  • G. Casal
  • N. Sánchez-Carnero
  • J. A. Domínguez-Gómez
  • T. Kutser
  • J. Freire
Original Paper

Abstract

Ría de Vigo and Ría de Aldán have high biological richness that is reflected in the number of environmental protection areas like the Atlantic Islands National Park and five places of community interest. Benthic algal communities play an important role in these ecosystems due to their ecological functions and support a great part of this biological richness. We tested by means of bio-optical modelling and Airborne Hyperspectral Scanner (AHS) images to what extent remote sensing could be used to map these communities in Ría de Vigo and Ría de Aldán (NW Spain). Reflectance spectra of dominating macroalgae groups were modelled for different water depths in order to estimate the separability of different bottom types based on their spectral signatures and the spectral characteristics of the AHS. Our results indicate that separation between three macroalgae groups (green, brown and red) as well as sand is possible when the bottoms are emerged during low tide. The spectra differences decrease rapidly with increasing water depth. Two types of classifications were carried out with the three AHS images: maximum likelihood and spectral angle mapper (SAM). Maximum likelihood showed positive results reaching overall accuracy percentages higher than 95 % and kappa coefficients higher than 0.90 for the bottom classes: shallow sand, deep sand, emerged rock, emerged macroalgae and submerged macroalgae. Sand and algae substrates were then separately analysed with SAM. These classifications showed positive results for differentiation between green and brown macroalgae until 5 m depth and high differences between all macroalgae and sandy substrate. However, differences between red and brown macroalgae are only detectable when the algae are emerged.

Keywords

Macroalgae Benthic Habitat Subtidal Zone Spectral Angle Mapper Bottom Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was supported by the Spanish Government through the Spanish Ministry of Environment and Rural and Marine Affairs (SARGAL PROJECT 030/SGTB/2007/1.4), the Galician government through the INCITE program (PROJECT 07MDS010CT) and by the European Regional Development Fund (ERDF). This research was also partially support by a pre-doctoral grant of María Barbeito Program (Xunta de Galicia) and a research grant of Diputación de A Coruña. The authors would like to thank CETMAR (Centro Tecnolóxico do Mar) for its help with field work and INTA for its support in the flight campaign and AHS images pre-processing. The authors also thank the anonymous reviewers for their helpful comments and suggestions.

References

  1. Alberotanza L, Brando VE, Ravagnan G, Zandonella A (1999) Hyperspectral aerial images. A valuable tool for submerged vegetation recognition in the Orbetello Lagoons, Italy. Int J Remote Sens 20:523–533Google Scholar
  2. Alonso-Pérez F, Ysebaert T, Castro CG (2010) Effects of suspended mussel culture on benthic-pelagic coupling in a coastal upwelling system (Ría de Vigo, NW Iberian Peninsula). J Exp Mar Biol Ecol 382:96–107Google Scholar
  3. Andrefouet S, Payri C, Hochberg EJ, Hu C, Atkinson MJ, Muller-Karger FE (2004) Use of in situ and airborne reflectance for scaling-up spectral discrimination of coral reef macroalgae from species to communities. Mar Ecol Progr Ser 283:161–177Google Scholar
  4. Arst H, Erm A, Reinart A, Sipelgas L, Herlevi A (2002) Calculating irradiance penetration into water bodies from the measured beam attenuation coefficient, II: application of the improved model to different types of lakes. Nord Hydrol 33(2/3):227–240Google Scholar
  5. Bárbara I, and Cremades J (1993) Guía de las Algas del litoral gallego. 2ª Ed Ayuntamiento de A Coruña (Casa das Ciencias), (2ª ed. Revisada)Google Scholar
  6. Beach KS, Borgeas HB, Nishimura NJ, Smith CM (1997) In vivo absorbance spectra and the ecophysiology of reef macroalgae. Coral Reefs 16:21–28Google Scholar
  7. Bertels L, Vanderstraete T, Van Coillie S, Knaeps E, Sterckx S, Goossens R, Deronde B (2008) Mapping coral reefs hyperspectral CASI data; a case study: Fordata, Tanimbar, Indonesia. Int J Remote Sen 29(8):2359–2391Google Scholar
  8. Brando VE, Dekker AG (2003) Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality. IEEE Trans Geosci Remote Sens 41:1378–1387Google Scholar
  9. Buiteveld H, Hakvoort J H M, Donze M (1994) The optical properties of pure water. SPIE vol. 2258, Ocean optics XII, 174–183Google Scholar
  10. Cacabelos E, Olabarria C, Incera M (2010) Effects of habitat structure and tidal height on epifaunal assemblages associated with macroalgae. Estuar Coast Shelf Sci 89:43–52Google Scholar
  11. Casal G, Kutser T, Domínguez-Gómez JA, Sánchez-Carnero N, Freire J (2011) Mapping benthic macroalgal communities in the coastal zone using CHRIS-PROBA mode 2 images. Estuar Coast Shelf Sci 94(3):281–290Google Scholar
  12. Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psycholo Meas 20(1):37–46Google Scholar
  13. Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37:35–46Google Scholar
  14. Corbari C, Sobrino JA, Mancini M, Hidalgo V (2010) Land surface temperature representativeness in a heterogeneous area through a distributed energy-water balance model and remote sensing data. Hydrol Earth Syst Sci 14:2141–2151Google Scholar
  15. Cremades J, Bárbara I, Veiga J (2004) Intertidal vegetation and its commercial potential on the shores of Galicia. Thalassas 20(2):69–80Google Scholar
  16. Dekker AG, Peters SWM (1993) The use of the Thematic Mapper for the analysis of eutrophic lakes: a case study in The Netherlands. Int J Remote Sens 14:799–822Google Scholar
  17. Dekker AG, BrandoVE, Anstee JM, Pinnel N, Kutser T, Hoogenboom H J (2001) Imaging spectrometry of water. Imaging spectrometry: basic principles and prospective applications, vol. IV. Kluwer, Dordrecht, pp 307–359Google Scholar
  18. Dekker AG, Byrne GT, Brando V E, Anstee JM (2003) Hyperspectral mapping of intertidal rock platform vegetation as a tool for adaptative management. CSIRO Land and water, remote sensing and spatial analysis, Canberra technical report 9/03Google Scholar
  19. Dierssen HM, Zimmerman C, Leathers RA, Downes TV, Davis CO (2003) Ocean color remote sensing of seagrass and bathymetry in the Bahamas Banks by high-resolution airborne imagery. Limnol Oceanogr 48(1):444–455Google Scholar
  20. Domínguez Gómez JA, Chuvieco-Salinero E, Sastre Merlín A (2009) Monitoring transparency in inland wáter bodies using multispectral images. Int J Remote Sens 30(6):1567–1586Google Scholar
  21. Fargion GS, Mueller JL (2000) Ocean Optics proto-cols for satellite ocean color sensor validation, revision 2, NASA/TM-2000-209966Google Scholar
  22. Fernández-Renau A, Gómez JA, de Miguel E (2005) The INTA AHS system. Sensors, systems, and next-generation satellites IX. In: Meynart R, Neeck SP, Shimoda H (eds) Proceedings of the SPIE, vol 5978, pp 471–478Google Scholar
  23. Figueiras FG, Labarta U, Fernández Reiriz MJ (2002) Coastal upwelling, primary production and mussel growth in the Rías Baixas of Galicia. Hydrobiologia 484:121–131Google Scholar
  24. Filgueira R, Castro CG (2010) Study of the trophic web of San Simón Bay (Ría deVigo) by using stable isotopes. Cont Shelf Res 31:476–487Google Scholar
  25. Fyfe SK (2003) Spatial and temporal variation in spectral reflectance: are seagrass species spectrally distinct? Limnol Oceanogr 48 (1, part 2):464–479Google Scholar
  26. Goetz AFH, Vane G, Solomon J, Rock BN (1985) Imaging spectrometry for Earth remote sensing. Science 228:1147–1153Google Scholar
  27. Gordon HR, Smith RC, Zaneveld JRV (1980) Introduction to ocean optics. Proc SPIE Soc Opt Eng 6:1–43Google Scholar
  28. Gotceitas V, Fraser S, Brown JA (1997) Use of eelgrass beds (Zostera marina) by juvenile Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 54:1303–1319Google Scholar
  29. Haxo FT, Blinks LR (1950) Photosynhetic action spectra of marine algae. J Gen Physiol 20:389–422Google Scholar
  30. Hedley JD, Mumby PJ (2002) Biological and remote sensing perspectives of pigmentation in coral reef organisms. Adv Mar Biol 43:277–317Google Scholar
  31. Henning BD, Cogan BC, Bartsch I (2007) Hyperspectral remote sensing and analysis of intertidal zones: a contribution to monitor coastal biodiversity. In: Car A, Griesebner G, Strobl J (ed) Geospatial crossroads, GI Forum. Wichmann, Heidelberg, pp 62–73Google Scholar
  32. Hunter PD, Gilvear DJ, Tyler AN, Willby NJ, Kelly A (2010) Mapping macrophytic vegetation in shallow lakes using the Compact Airborne Spectrographic Imager (CASI). Aquat Conserv Mar Freshwater Ecosyst 20:717–727Google Scholar
  33. Jensen JR, Narumalani S, Weatherbee O, Mackey HE (1991) Remote sensing offers an alternative for mapping wetlands. Geo Inf Syst 1:46–53Google Scholar
  34. Jiménez M, Díaz-Delgado R, Soriguer R, Fernández-Renau A, Prado E, Gutiérrez de la Cámara O (2005) Aproximación del AHS a la estimación de la diversidad biológica de las comunidades de matorral de la Reserva Biológica de Doñana. XI Congreso de la Asociación Española de Teledetección, 21–23 septiembre, Santa Cruz de TenerifeGoogle Scholar
  35. John DM (1971) The distribution and net productivity of sublittoral populations of attached macrophytic algae in an estuary on the Atlantic coast of Spain. Mar Biol 11:90–97Google Scholar
  36. Juanes J A, Guinda X, Puente A, Revilla JA (2008) Macroalgae, a suitable indicator of the ecological status of coastal rocky communities in the NE Atlantic. Ecological indicators, pp 351–359Google Scholar
  37. Jupp DLB, Kirk JTO, Harris GP (1994) Detection, identification and mapping cyanobacteria-using remote sensing to measure the optical quality of turbird inland waters. Aust J Mar Freshw Res 45:501–828Google Scholar
  38. Kirk JTO (1984) Dependence of relationship between inherent and apparent optical properties of water on solar altitude. Limnol Oceanogr 29:350–356Google Scholar
  39. Kruse FA, Leftkoff AB, Boardman JB, Heidebrecht KB, Sahpiro AT, Barloon PJ, Goetz AFH (1993) The spectral image processing system (SIPS)—interactive visualisation and analysis of imaging spectrometer data. Remote Sens Environ 44:145–163Google Scholar
  40. Kutser T (2004) Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing. Limnol Oceanogr 49:2179–2189Google Scholar
  41. Kutser T, Dekker AG, Skirving W (2003) Modelling spectral discrimination of great barrier reef benthic communities by remote sensing instruments. Limnol Oceanogr 48(1, part 2):497–510Google Scholar
  42. Kutser T, Miller I, Jupp DLB (2006a) Mapping coral reef benthic substrates using hyperspectral space-borne images and spectral libraries. Estuar Coast Shelf Sci 70:449–460Google Scholar
  43. Kutser T, Vahtmäe E, Metsamaa L (2006b) Spectral library of macroalgae and benthic substrates in Estonian coastal waters. Proc Estonian Acad Sci Biol Ecol 55:329–340Google Scholar
  44. Kutser T, Vahtmäe E, Praks J (2009) A sun glint correction method for hyperspectral imagery containing areas with non-negligible water leaving NIR signal. Remote Sens Environ 113:2267–2274Google Scholar
  45. Landis J, Koch G (1997) The measurement of observer agreement for categorical data. Biometrics 33:159–174Google Scholar
  46. Lee ZP, Du KP, Arnone R (2005) A model for the diffuse attenuation coefficient of downwelling irradiance. J Geophys Res 110:C02016. doi: 10.1029/2004JC002275 Google Scholar
  47. León I, Méndez G, Rubio B (2004) Fases biogeoquímicas del fe y grado de piritización en sedimentos de la Ría de Pontevedra (NO España): Implicaciones del cultivo del mejillón en bateas. Ciencias Marinas 30(004):585–602Google Scholar
  48. Liu CC, Carder KL, Miller RL, Ivey JE (2002) Fast and accurate model of underwater scalar irradiance. Appl Opt 41:4962–4974Google Scholar
  49. Lønborg C, Álvarez-Salgado XA, Davidson K, Martínez-García M, Teira E (2010) Assessing the microbial bioavailability and degradation rate constants of dissolved organic matter by fluorescence spectroscopy in the coastal upwelling system of the Ría de Vigo. Mar Chem 119:121–129Google Scholar
  50. Lorentsen SH, Gremillet D, Nymoen GH (2004) Annual variation in diet of breeding great cormorants: does it reflect varying recruitment of Gadoids? Waterbirds 27:161–169Google Scholar
  51. Lubin D, Li W, Dustan P, Mazel CH, Stamnes K (2001) Spectral signatures of coral reefs: features from space. Remote Sens Environ 75:127–137Google Scholar
  52. Madsen JD, Chambers PA, James WF, Koch EW, Westlake DF (2001) The interaction between water movement, sediment dynamics and submerged macrophytes. Hydrobiology 444(1–3):71–84Google Scholar
  53. Maritorena S, Morel A, Gentil B (1994) Diffuse reflectance of oceanic shallow waters. Influence of water depth and bottom albedo. Limnol Oceanogr 39(7):1689–1703Google Scholar
  54. Mehrtens C, Kaschell T, Tardeck F, Graser N, Borowy C, Bartsch I (2009) Differentiation of brown seaweeds by hyperspectral airborne remote sensing and field spectrometry in a rocky intertidal. In: 6th EARSeL SIG IS workshopGoogle Scholar
  55. Mélin F, Zibordi G (2005) Aerosol variability in the Po Valley analyzed from automated optical measurements. Geophys Res Lett 32(L03810):1–4Google Scholar
  56. Mishra DR, Narumalani S, Rundquist D, Lawson M (2005) Characterizing the vertical diffuse attenuation coefficient for downwelling irradiance in coastal waters: Implications for water penetration by high resolution satellite data. ISPRS J Photogr Rem Sens 60:48–64Google Scholar
  57. Mobley CD (1999) Estimation of remote sensing reflectance from above-surface measurements. Appl Opt 38:7442–7455Google Scholar
  58. Mohammed AI, Fredriksen S (2004) Production, respiration and exudation of dissolved organic matter by the kelp Laminaria hyperborea along the west coast of Norway. J Mar Biol Assoc UK 84:887–894Google Scholar
  59. Montero P, Gómez-Gesteira M, Taboada JJ, Ruiz-Villarreal M, Santos AP, Neves RR, Prego R, Pérez-Villar V (1999) On residual circulation of the Ria of Vigo, using a 3-D baroclinic model. Bol Inst Esp Oceanogr 15(1–4):31–38Google Scholar
  60. Morel A, Antoine D, Gentili B (2002) Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle phase function. Appl Opt 41:6289–6306Google Scholar
  61. Myers S, Miller RL (2005) Optical airborne remote sensing. In: Miller S, Del Castillo CE, McKee BA (eds) Remote sensing of coastal aquatic environments. Springer, Dordrecht, pp 51–67Google Scholar
  62. Nogueira E, Pérez FF, Ríos AF (1997) Seasonal patterns and long-terms trends in an estuarine upwelling ecosystem (Ría de Vigo, NW Spain). Estuar Coast Shelf Sci 44:285–300Google Scholar
  63. Nombela MA, Vilas F (1987) Medios y submedios en el sector intermareal de la ensenada de San Simón. Ría de Vigo (Pontevedra): secuencias sedimentarias características. Acta Geológica Hispánica 21–22:223–231Google Scholar
  64. Olabarria C, Rodil IF, Incera M, Troncoso JS (2009) Limited impact of Sargassum muticum on native algal assemblages from rocky intertidal shores. Mar Environ Res 67:153–158Google Scholar
  65. Pe’eri S, Morrison JR, Short F, Mathieson A, Brook A, Trowbridge P (2008) Macroalgae and eelgrass mapping in Great Bay Estuary using AISA hyperspectral imagery. A final report to The New Hampshire Estuaries ProjectGoogle Scholar
  66. Phinn S, Roelfsema C, Dekker A, Brando V, Anstee J (2008) Mapping seagrass species, cover and biomass in shallow waters: An assessment of satellite multispectral and airborne hyperspectral imaging systems in Moreton Bay (Australia). Remote Sens Environ 112:3413–3425Google Scholar
  67. Pierson DC, Strömbeck N (2000) A modelling approach to evaluate preliminary remote sensing algorithms: Use of water quality data from Swedish Great Lakes. Geophysica 36(1–2):177–202Google Scholar
  68. Pinnel N, Heege T, Zimmermann S (2004) Spectral discrimination of submerged macrophytes in lakes using hyperspectal remote sensing data. In: SPIE Proceedings of Ocean Optics XVII, Fremantle, AustraliaGoogle Scholar
  69. Preisendorfer RW (1976) Hydrologic optics, vol 1, Introduction. National Technical Information Service, Springfield, VAGoogle Scholar
  70. Reinart A, Paavel B, Pierson D, Strömbek N (2004) Inherent and apparent optical properties of Lake Pepsi, Estonia. Boreal Environ Res 9:429–445Google Scholar
  71. Rejas JG, Prado E, Jiménez M, Fernández-Renau A, Gómez JA, de Miguel E (2005) Caracterización del sensor hiperespectal AHS para la georreferenciación directa de imágenes a partir de un sistema inercial GPS/IMU. International Congress 6th Geomatic week, BarcelonaGoogle Scholar
  72. Richards JA (1999) Remote sensing and digital iamge analysis: an introduction, 2nd edn. Springer, Berlin, p 363Google Scholar
  73. Richter R (2004) Atmospheric/topographic correction for airborne imagery. ATCOR-4 user guide version 3.1. DLR, Wessling, GermanyGoogle Scholar
  74. Schott JR (1997) Remote sensing: the image chain approach. University Press, New York, p 497Google Scholar
  75. Shaffer S (2003) Preferential use of nearshore kelp habitats by juvenile salmon and forage fish. In: Proceedings of the Georgia Basin/Puget sound research conferenceGoogle Scholar
  76. Silva TSF, Costa MPF, Melack JM, Novo EMLM (2008) Remote sensing of aquatic vegetation: theory and applications. Environ Monit Assess 140:131–145Google Scholar
  77. Smith CM, Alberte RS (1994) Characterization of in vivo absorption features of chlorophyte, phaeophyte and rhodophyte algal species. Mar Biol 118:511–521Google Scholar
  78. Stephens FC, Louchard EM, Reid RP, Maffione RA (2003) Effects of microalgal communities on reflectance spectra of carbonate sediments in subtidal optically shallow marine environments. Limnol Oceanogr 48(1, part 2):535–546Google Scholar
  79. Szekielda KH, Marmorino GO, Bowles JH, Gillis D (2010) High spatial resolution spectrometry of rafting macroalgae (Sargassum). J Appl Remote Sens 4:043529Google Scholar
  80. Theriault C, Scheibling R, Hatcher B, Jones W (2006) Mapping the distribution of an invasive marine alga (Codium fragile spp. tomentosoides) in optically shadow coastal waters using the compact airborne hyperspectral imager (CASI). Can J Remote Sens 32(5):315–329Google Scholar
  81. Tyler JE (1960) Radiance distribution as a function of depth in an underwater environment. Bull Scripps Inst Oceanogr 7:363–411Google Scholar
  82. Vahtmäe E, Kuster T, Martin G, Kotta J (2006) Feasibility of hyperspectral remote sensing for mapping macroalgal cover in turbid coastal waters- a Baltic Sea case study. Remote Sens Environ 101:342–351Google Scholar
  83. Vasquez JA (2008) Production, use and fate of Chilean brown seaweeds: resources for a sustainable fishery. J Appl Phycol 20:7–17Google Scholar
  84. Vea J, Ask E (2011) Creating a sustainable commercial harvest of Laminaria hyperborea, in Norway. J Appl Phycol 23:489–494Google Scholar
  85. Veiga-Villar AJ (1999) Caracterización de la flora y vegetación bentónica marina intermareal y de su riqueza en recursos explotables en las Rías Baixas gallegas (NO Península Ibérica). Departamento de Biología Animal, Biología Vegetal y Ecología. A Coruña, Universidad de A CoruñaGoogle Scholar
  86. Wettle M, Brando VE, Dekker AG (2004) A methodology for retrieval of environmental noise equivalent spectra applied to four Hyperion scenes of the same tropical coral reef. Remote Sens Environ 93:188–190Google Scholar
  87. Xu F, Dawson RW, Tao S, Cao J, Li B (2001) A method for lake ecosystem health assessment: an Ecological Modeling Method (EMM) and its application. Hydrobiologia 443:159–175Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • G. Casal
    • 1
  • N. Sánchez-Carnero
    • 1
  • J. A. Domínguez-Gómez
    • 2
  • T. Kutser
    • 3
  • J. Freire
    • 1
  1. 1.Grupo de Recursos Marinos y Pesquerías, Facultad de CienciasUniversidad de A CoruñaA CoruñaSpain
  2. 2.Centro de Estudios Hidrográficos (CEDEX)MadridSpain
  3. 3.Estonian Marine InstituteUniversity of TartuTallinnEstonia

Personalised recommendations