Marine Biology

, Volume 159, Issue 8, pp 1843–1852 | Cite as

Foraging strategies of male Adélie penguins during their first incubation trip in relation to environmental conditions

  • Manuelle Cottin
  • Ben Raymond
  • Akiko Kato
  • Françoise Amélineau
  • Yvon Le Maho
  • Thierry Raclot
  • Ben Galton-Fenzi
  • Andrew Meijers
  • Yan Ropert-Coudert
Original Paper


Knowledge of habitat use by top marine predators in response to environmental conditions is crucial in the current context of global changes occurring in the Southern Ocean. We examined the at-sea locations of male Adélie penguins (Pygoscelis adeliae) breeding at Dumont d’Urville during their first, long incubation trip. Compared with the chick-rearing period, penguins performed longer trips, going to oceanic waters as far as 320 km from the colony. We observed 3 strategies: (1) five individuals covered large distances to the north, targeting open-ocean areas and following the currents of two persistent eddies; (2) five individuals foraged to the north-west, close to the Antarctic shelf slope at the limit of the pack ice; and (3) three individuals covered much shorter distances (northwards or eastwards). The foraging range also seemed to be limited by the body condition of the penguins before their departure to sea.



This study was approved by the ethic committee and supported logistically and financially by the French Polar Institute (IPEV, program 137 ECOPHY-ANTAVIA) and the Terres Australes et Antarctiques Françaises (TAAF). M. Cottin was supported by a grant from the Région Alsace. We are grateful to WWF and especially R. Downie for funding. We are indebted to M. Debin and A-M. Thierry for their great help in the field. We thank Dr. J. P. Robin for lyophilizing blood samples, P. Richard and G. Guillou for stable isotope measurements and H. Gachot-Neveu and M. Beaugey for molecular sexing. Finally, we also thank Dr. S. Aoki for explanations about oceanography parameters around Dumont d’Urville.


  1. Ainley DG (2002) The Adélie penguin. Bellwether of climate change. Columbia University Press, New YorkGoogle Scholar
  2. Ainley DG, Jacobs SS (1981) Sea-bird affinities for ocean and ice boundaries in the Antarctic. Deep-Sea Res I 28:1173–1185CrossRefGoogle Scholar
  3. Ainley DG, Leresche RE, Sladen WJL (1983) Breeding biology of the Adélie penguin. University of California Press, BerkeleyGoogle Scholar
  4. Ainley DG, Ribic CA, Fraser WR (1992) Does prey preference affect habitat choice in Antarctic seabirds. Mar Ecol Prog Ser 90:207–221CrossRefGoogle Scholar
  5. Ainley DG, Wilson PR, Barton KJ, Ballard G, Nur N, Karl B (1998) Diet and foraging effort of Adélie penguins in relation to pack-ice conditions in the southern Ross Sea. Polar Biol 20:311–319CrossRefGoogle Scholar
  6. Ainley DG, Ballard G, Dugger KM (2006) Competition among penguins and cetaceans reveals trophic cascades in the western Ross Sea, Antarctica. Ecology 87:2080–2093CrossRefGoogle Scholar
  7. Amakasu K, Ono A, Hirano D, Moteki M, Ishimaru T (2011) Distribution and density of Antarctic krill (Euphausia superba) and Ice krill (E. crystallorophias) off Adélie Land in austral summer 2008 estimated by acoustical methods. Polar Sci 5:187–194CrossRefGoogle Scholar
  8. Ancel A, Fetter L, Groscolas R (1998) Changes in egg and body temperature indicate triggering of egg desertion at a body mass threshold in fasting incubating Blue petrels (Halobaena caerulea). J Comp Physiol B 168:533–539CrossRefGoogle Scholar
  9. Angelier F, Clement-Chastel C, Gabrielsen GW, Chastel O (2007) Corticosterone and time-activity budget: an experiment with black-legged kittiwakes. Horm Behav 52:482–491CrossRefGoogle Scholar
  10. Angelier F, Bost C-A, Giraudeau M, Bouteloup G, Dano S, Chastel O (2008) Corticosterone and foraging behavior in a diving seabird: the Adélie penguin, Pygoscelis adeliae. Gen Comp Endocrinol 156:134–144CrossRefGoogle Scholar
  11. Aoki S, Fukai D, Hirawake T, Ushio S, Rintoul SR, Hasumoto H, Ishimaru T, Sasaki H, Kagimoto T, Sasai Y, Mitsudera H (2007) A series of cyclonic eddies in the Antarctic Divergence off Adélie Coast. J Geophys Res Oceans 112:C05019Google Scholar
  12. Atkinson A, Siegel V, Pakhomov E, Rothery P (2004) Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432:100–103CrossRefGoogle Scholar
  13. Beaulieu M, Dervaux A, Thierry A-M, Lazin D, Le Maho Y, Ropert-Coudert Y, Spée M, Raclot T, Ancel A (2010) When sea-ice clock is ahead of Adélie penguins’ clock. Funct Ecol 24:93–102CrossRefGoogle Scholar
  14. Brierley AS, Fernandes PG, Brandon MA, Armstrong F, Millard NW, McPhail SD, Stevenson P, Pebody M, Perrett J, Squires M, Bone DG, Griffiths G (2002) Antarctic krill under sea ice: elevated abundance in a narrow band just south of ice edge. Science 295:1890–1892CrossRefGoogle Scholar
  15. Chappell MA, Janes DN, Shoemaker VH, Bucher TL, Maloney SK (1993) Reproductive effort in Adélie penguins. Behav Ecol Sociobiol 33:173–182CrossRefGoogle Scholar
  16. Chaurand T, Weimerskirch H (1994) Incubation routine, body-mass regulation and egg neglect in the blue petrel Halobaena caerulea. Ibis 136:285–290CrossRefGoogle Scholar
  17. Cherel Y (2008) Isotopic niches of Emperor and Adélie penguins in Adélie Land, Antarctica. Mar Biol 154:813–821CrossRefGoogle Scholar
  18. Cherel Y, Hobson KA, Bailleul FR, Groscolas R (2005) Nutrition, physiology, and stable isotopes: new information from fasting and molting penguins. Ecology 86:2881–2888CrossRefGoogle Scholar
  19. Cherel Y, Hobson KA, Guinet C, Vanpe C (2007) Stable isotopes document seasonal changes in trophic niches and winter foraging individual specialization in diving predators from the Southern Ocean. J Anim Ecol 76:826–836CrossRefGoogle Scholar
  20. Clarke J, Manly B, Kerry K, Gardner H, Franchi E, Corsolini S, Focardi S (1998) Sex differences in Adélie penguin foraging strategies. Polar Biol 20:248–258CrossRefGoogle Scholar
  21. Clarke J, Emmerson LM, Otahal P (2006) Environmental conditions and life history constraints determine foraging range in breeding Adélie penguins. Mar Ecol Prog Ser 310:247–261CrossRefGoogle Scholar
  22. Cockrem JF, Potter MA, Candy EJ (2006) Corticosterone in relation to body mass in Adélie penguins (Pygoscelis adeliae) affected by unusual sea ice conditions at Ross Island, Antarctica. Gen Comp Endocrinol 149:244–252CrossRefGoogle Scholar
  23. Croxall JP, Trathan PN, Murphy EJ (2002) Environmental change and Antarctic seabird populations. Science 297:1510–1514CrossRefGoogle Scholar
  24. Culik BM, Bannasch R, Wilson RP (1994) External devices on penguins: how important is shape? Mar Biol 118:353–357CrossRefGoogle Scholar
  25. Davis LS, Miller GD (1992) Satellite tracking of Adelie penguins. Polar Biol 12:503–506CrossRefGoogle Scholar
  26. Ellegren H (1996) First gene on the avian W chromosome (CHD) provides a tag for universal sexing of non-ratite birds. Proc R Soc Lond B 263:1635–1641CrossRefGoogle Scholar
  27. Forcada J, Trathan PN (2009) Penguin responses to climate change in the Southern Ocean. Glob Change Biol 15:1618–1630CrossRefGoogle Scholar
  28. Groscolas R, Lacroix A, Robin JP (2008) Spontaneous egg or chick abandonment in energy-depleted King penguins: a role for corticosterone and prolactin? Horm Behav 53:51–60CrossRefGoogle Scholar
  29. Hemery LG, Galton-Fenzi B, Améziane N, Riddle MJ, Rintoul SR, Beaman RJ, Post AL, Eléaume M (2011) Predicting habitat preferences for Anthometrina adriani (Echinodermata) on the East Antarctic continental shelf. Mar Ecol Prog Ser 441:105–116CrossRefGoogle Scholar
  30. Jouventin P, Capdeville D, Cuenotchaillet F, Boiteau C (1994) Exploitation of pelagic resources by a non-flying seabird: satellite tracking of the king penguin throughout the breeding cycle. Mar Ecol Prog Ser 106:11–19CrossRefGoogle Scholar
  31. Kahn NW, St John J, Quinn TW (1998) Chromosome-specific intron size differences in the avian CHD gene provide an efficient method for sex identification in birds. Auk 115:1074–1078Google Scholar
  32. Kato A, Watanuki Y, Naito Y (2003) Annual and seasonal changes in foraging site and diving behaviour in Adélie penguins. Polar Biol 26:389–395Google Scholar
  33. Kato A, Yoshioka A, Sato K (2009) Foraging behaviour of Adélie penguins during incubation period in Lützow-Holm Bay. Polar Biol 32:181–186CrossRefGoogle Scholar
  34. Kerry KR, Clarke JR, Else JD (1995) The foraging range of Adélie penguins at Béchervaise Island, Mac Robertson Land, Antarctica, as determined by satellite telemetry. In: Dann P, Norman I, Reilly P (eds) The Penguins. Surrey Beathy and sons, Sydney, pp 216–243Google Scholar
  35. Lannuzel D, Schoemann V, de Jong J, Tison J-L, Chou L (2007) Distribution and biogeochemical behaviour of iron in the East Antarctic sea ice. Mar Chem 106:18–32. doi: 10.1016/j.marchem.2006.06.010 CrossRefGoogle Scholar
  36. Lyver PO, MacLeod CJ, Ballard G, Karl BJ, Barton KJ, Adams J, Ainley DG, Wilson PR (2011) Intra-seasonal variation in foraging behavior among Adélie penguins (Pygoscelis adeliae) breeding at Cape Hallett, Ross Sea, Antarctica. Polar Biol 34:49–67CrossRefGoogle Scholar
  37. Nicol S, Pauly T, Bindoff NL, Wright S, Thiele D, Hosie GW, Strutton PG, Woehler E (2000) Ocean circulation off east Antarctica affects ecosystem structure and sea-ice extent. Nature 406:504–507CrossRefGoogle Scholar
  38. Pinaud D (2008) Quantifying search effort of moving animals at several spatial scales using first-passage time analysis: effect of the structure of environment and tracking systems. J Appl Ecol 45:91–99CrossRefGoogle Scholar
  39. Rodary D, Wienecke BC, Bost CA (2000) Diving behaviour of Adélie penguins (Pygoscelis adeliae) at Dumont D’Urville, Antarctica: nocturnal patterns of diving and rapid adaptations to changes in sea-ice condition. Polar Biol 23:113–120CrossRefGoogle Scholar
  40. Ropert-Coudert Y, Wilson RP, Daunt F, Kato A (2004) Patterns of energy acquisition by a central place forager: benefits of alternating short and long foraging trips. Behav Ecol 15:824–830CrossRefGoogle Scholar
  41. Sakamoto KQ, Sato K, Ishizuka M, Watanuki Y, Takahashi A, Daunt F, Wanless S (2009) Can ethograms be automatically generated using body acceleration data from free-ranging birds? PLoS ONE 4:e5379CrossRefGoogle Scholar
  42. Sambrook J, Fritsch EF, Maniatis T (1989) Amplification methods. Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  43. Shchepetkin AF, McWilliams JC (2005) The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model 9:347–404CrossRefGoogle Scholar
  44. Smith WHF, Sandwell DT (1997) Global seafloor topography from satellite altimetry and ship depth soundings. Science 277:1957–1962Google Scholar
  45. Smith RC, Ainley D, Baker K, Domack E, Emslie S, Fraser B, Kennett J, Leventer A, Mosley-Thompson E, Stammerjohn S, Vernet M (1999) Marine ecosystem sensitivity to climate change. BioScience 49:393–404CrossRefGoogle Scholar
  46. Sokolov S, Rintoul SR, Wienecke B (2006) Tracking the polar front south of New Zealand using penguin dive data. Deep Sea Res Part 1 Oceanogr Res Pap 53:591–607CrossRefGoogle Scholar
  47. Spée M, Beaulieu M, Dervaux A, Chastel O, Le Maho Y, Raclot T (2010) Should I stay or should I go: hormonal control of nest abandonment in a long-lived bird, the Adélie penguin. Horm Behav 58:762–768CrossRefGoogle Scholar
  48. Spreen G, Kaleschke L, Heygster G (2008) Sea ice remote sensing using AMSR-E 89 GHz channels. J Geophys Res 113:C02S03. doi: 10.1029/2005JC003384
  49. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. ISBN 3-900051-07-0.
  50. Tierney M, Nichols PD, Wheatley KE, Hindell MA (2008) Blood fatty acids indicate inter- and intra-annual variation in the diet of Adélie penguins: comparison with stomach content and stable isotope analysis. J Exp Mar Biol Ecol 367:65–74CrossRefGoogle Scholar
  51. Vleck CM, Van Hook JA (2002) Absence of daily rhythms of prolactin and corticosterone in Adélie Penguins under continuous daylight. Condor 104:667–671CrossRefGoogle Scholar
  52. Watanuki Y, Kato A, Naito Y, Robertson G, Robinson S (1997) Diving and foraging behaviour of Adélie penguins in areas with and without fast sea ice. Polar Biol 17:296–304CrossRefGoogle Scholar
  53. Watanuki Y, Kato A, Sato K, Niizuma Y, Bost C-A, Le Maho Y, Naito Y (2002) Parental mass change and food provisioning in Adélie penguins rearing chicks in colonies with contrasting sea-ice conditions. Polar Biol 25:672–681Google Scholar
  54. Weimerskirch H (2007) Are seabirds foraging for unpredictable resources? Deep-Sea Res II 54:211–223CrossRefGoogle Scholar
  55. Wienecke BC, Lawless R, Rodary D, Bost CA, Thomson R, Pauly T, Robertson G, Kerry KR, Le Maho Y (2000) Adélie penguin foraging behaviour and krill abundance along the Wilkes and Adélie land coasts, Antarctica. Deep-Sea Res II 47:2573–2587CrossRefGoogle Scholar
  56. Wienecke B, Raymond B, Robertson G (2010) Maiden journey of fledgling emperor penguins from the Mawson Coast, East Antarctica. Mar Ecol Prog Ser 410:269–282CrossRefGoogle Scholar
  57. Wilson PR, Ainley DG, Nur N, Jacobs SS, Barton KJ, Ballard G, Comiso JC (2001) Adélie penguin population change in the pacific sector of Antarctica: relation to sea-ice extent and the Antarctic Circumpolar Current. Mar Ecol-Prog Ser 213:301–309CrossRefGoogle Scholar
  58. Yoda K, Ropert-Coudert Y (2007) Temporal changes in activity budgets of chick-rearing Adélie penguins. Mar Biol 151:1951–1957CrossRefGoogle Scholar
  59. Zimmer I, Wilson RP, Gilbert C, Beaulieu M, Ancel A, Plötz J (2008) Foraging movements of Emperor penguins at Pointe Géologie, Antarctica. Polar Biol 31:229–243CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Manuelle Cottin
    • 1
    • 2
  • Ben Raymond
    • 3
    • 4
  • Akiko Kato
    • 1
    • 2
  • Françoise Amélineau
    • 1
    • 2
  • Yvon Le Maho
    • 1
    • 2
  • Thierry Raclot
    • 1
    • 2
  • Ben Galton-Fenzi
    • 4
  • Andrew Meijers
    • 5
  • Yan Ropert-Coudert
    • 1
    • 2
  1. 1.IPHC-DEPE, UMR 7178 CNRS - Université de StrasbourgStrasbourg Cedex 2France
  2. 2.CNRS, UMR7178StrasbourgFrance
  3. 3.Department of Sustainability, Environment, Water, Population and CommunitiesAustralian Antarctic DivisionKingstonAustralia
  4. 4.Antarctic Climate and Ecosystems Cooperative Research CentreUniversity of TasmaniaHobartAustralia
  5. 5.British Antarctic SurveyCambridgeUK

Personalised recommendations