Advertisement

Marine Biology

, Volume 159, Issue 11, pp 2503–2518 | Cite as

Effects of rising temperature on pelagic biogeochemistry in mesocosm systems: a comparative analysis of the AQUASHIFT Kiel experiments

  • Julia Wohlers-Zöllner
  • Antje Biermann
  • Anja Engel
  • Petra Dörge
  • Aleksandra M. Lewandowska
  • Markus von Scheibner
  • Ulf Riebesell
Original Paper

Abstract

A comparative analysis of data, obtained during four indoor-mesocosm experiments with natural spring plankton communities from the Baltic Sea, was conducted to investigate whether biogeochemical cycling is affected by an increase in water temperature of up to 6 °C above present-day conditions. In all experiments, warming stimulated in particular heterotrophic bacterial processes and had an accelerating effect on the temporal development of phytoplankton blooms. This was also mirrored in the build-up and partitioning of organic matter between particulate and dissolved phases. Thus, warming increased both the magnitude and rate of dissolved organic carbon (DOC) build-up, whereas the accumulation of particulate organic carbon (POC) and phosphorus (POP) decreased with rising temperature. In concert, the observed temperature-mediated changes in biogeochemical components suggest strong shifts in the functioning of marine pelagic food webs and the ocean’s biological carbon pump, hence providing potential feedback mechanisms to Earth’s climate system.

Keywords

Particulate Organic Matter Particulate Organic Carbon Experimental Warming Dissolve Organic Phosphorus Bloom Period 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank A. Ludwig, N. Händel and P. Fritsche for their technical assistance in sample preparation and analysis. All members of the Kiel AQUASHIFT-team are appreciated for their help during the experiments. We are particularly grateful to E. Zöllner and the anonymous reviewers for their comments on an earlier version of this manuscript. This work was supported by Deutsche Forschungsgemeinschaft (DFG) grant no. RI 598/2-3 to U. R. and A. E. and by the Helmholtz Association (contract no. HZ-NG-102 to A. E.).

References

  1. Azam F (1998) Microbial control of oceanic carbon flux: the plot thickens. Science 280:694–696CrossRefGoogle Scholar
  2. Barnett TP, Pierce DW, AchutaRao KM, Gleckler PJ, Santer BD, Gregory JM, Washington WM (2005) Penetration of human-induced warming into the world’s oceans. Science 309:284–287CrossRefGoogle Scholar
  3. Bellerby RGJ, Schulz KG, Riebesell U, Neill C, Nondal G, Johannessen T, Brown KR (2008) Marine ecosystem community carbon and nutrient uptake stoichiometry under varying ocean acidification during the PeECE III experiment. Biogeosciences 5:1517–1527CrossRefGoogle Scholar
  4. Bopp L, Monfray P, Aumont O, Dufresne J-L, Le Treut H, Madec G, Terray L, Orr JC (2001) Potential impact of climate change on marine export production. Glob Biogeochem Cycles 15:81–99CrossRefGoogle Scholar
  5. Boyd PW, Doney SC (2002) Modeling regional responses by marine pelagic ecosystems to global climate change. Geophys Res Lett 29:1806CrossRefGoogle Scholar
  6. Breithaupt P (2009) The impact of climate change on phytoplankton-bacterioplankton interactions. Dissertation, Christian-Albrechts-University, Kiel, GermanyGoogle Scholar
  7. Brock TD (1981) Calculating solar radiation for ecological models. Ecol Model 14:1–19CrossRefGoogle Scholar
  8. Chin WC, Orellana MV, Verdugo P (1998) Spontaneous assembly of marine dissolved organic matter into polymers. Nature 391:568–572CrossRefGoogle Scholar
  9. Claquin P, Probert I, Lefebvre S, Veron B (2008) Effects of temperature on photosynthetic parameters and TEP production in eight species of marine microalgae. Aquat Microb Ecol 51:1–11CrossRefGoogle Scholar
  10. Copin MG, Avril B (1993) Vertical distribution and temporal variation of dissolved organic carbon in the North-Western Mediterranean Sea. Deep-Sea Res I 40:1963–1972CrossRefGoogle Scholar
  11. Davison IR (1991) Environmental effects on algal photosynthesis: temperature. J Phycol 27:2–8CrossRefGoogle Scholar
  12. Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430:881–884CrossRefGoogle Scholar
  13. Engel A (2004) Distribution of transparent exopolymer particles (TEP) in the northeast Atlantic Ocean and their potential significance for aggregation processes. Deep-Sea Res I 51:83–92CrossRefGoogle Scholar
  14. Engel A, Goldthwait S, Passow U, Alldredge AL (2002) Temporal decoupling of carbon and nitrogen dynamics in a mesocosm diatom bloom. Limnol Oceanogr 47:753–761CrossRefGoogle Scholar
  15. Engel A, Thoms S, Riebesell U, Rochelle-Newall E, Zondervan I (2004) Polysaccharide aggregation as a potential sink of marine dissolved organic carbon. Nature 428:929–932CrossRefGoogle Scholar
  16. Engel A, Händel N, Wohlers J, Lunau M, Grossart HP, Sommer U, Riebesell U (2011) Effects of sea surface warming on the production and composition of dissolved organic matter during phytoplankton blooms: results from a mesocosm study. J Plankt Res 33:357–372CrossRefGoogle Scholar
  17. Finkel ZV, Beardall J, Flynn KJ, Quigg A, Rees TAV, Raven JA (2009) Phytoplankton in a changing world: cell size and elemental stoichiometry. J Plankt Res 32:119–137CrossRefGoogle Scholar
  18. Fuhrman JA, Azam F (1982) Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Mar Biol 66:109–120CrossRefGoogle Scholar
  19. Gargas E (1975) A manual for phytoplankton primary production studies in the Baltic. Baltic Mar Biol 2:1–88Google Scholar
  20. Hansen HP, Koroleff F (1999) Determination of nutrients. In: Grasshoff K, Kremling K, Ehrhardt M (eds) Methods of seawater analysis. Wiley VCH, Weinheim, pp 159–228CrossRefGoogle Scholar
  21. Jiao N, Herndl GJ, Hansell DA, Benner R, Kattner G, Wilhelm SW, Kirchman DL, Weinbauer MG, Luo T, Chen F, Azam F (2010) Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat Rev Microbiol 8:593–599CrossRefGoogle Scholar
  22. Kawasaki N, Benner R (2006) Bacterial release of dissolved organic matter during cell growth and decline: molecular origin and composition. Limnol Oceanogr 51:2170–2180CrossRefGoogle Scholar
  23. Kim JM, Lee K, Shin K, Yang EJ, Engel A, Karl DM, Kim HC (2011) Shifts in biogenic carbon flow from particulate to dissolved forms under high carbon dioxide and Warm Ocean conditions. Geophys Res Lett 38:L08612CrossRefGoogle Scholar
  24. Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett. doi: 10.1111/j.1461-0248.2010.01518x
  25. Kujawinski EB (2011) The impact of microbial metabolism on marine dissolved organic matter. Annu Rev Mar Sci 3:567–599CrossRefGoogle Scholar
  26. Levitus S, Antonov J, Boyer T (2005) Warming of the world ocean, 1955–1998. Geophys Res Lett 32:L02604CrossRefGoogle Scholar
  27. Lewandowska AM, Sommer U (2010) Climate change and the spring bloom: a mesocosm study on the influence of light and temperature on phytoplankton and mesozooplankton. Mar Ecol Prog Ser 405:101–111CrossRefGoogle Scholar
  28. Lewandowska AM, Breithaupt P, Hillebrand H, Hoppe HG, Jürgens K, Sommer U (2011) Responses of primary productivity to increased temperature and phytoplankton diversity. J Sea Res. doi: 10.1016/j.seares.2011.10.003
  29. López-Urrutia A, San Martin E, Harris RP, Irigoien X (2006) Scaling the metabolic balance of the oceans. Proc Nat Acad Sci 103:8739–8744CrossRefGoogle Scholar
  30. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global climate projections. In: Solomon S, Qin MMD, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 747–845Google Scholar
  31. Morán XAG, Sebastián M, Pedrós-Alió C, Estrada M (2006) Response of Southern Ocean phytoplankton and bacterioplankton production to short-term experimental warming. Limnol Oceanogr 51:1791–1800CrossRefGoogle Scholar
  32. Morán XAG, López-Urrutia A, Calvo-Díaz A, Li WKW (2010) Increasing importance of small phytoplankton in a warmer ocean. Glob Change Biol 16:1137–1144CrossRefGoogle Scholar
  33. Müren U, Berglund J, Samuelsson K, Andersson A (2005) Potential effects of elevated sea-water temperature on pelagic food webs. Hydrobiol 545:153–166CrossRefGoogle Scholar
  34. Myklestad S, Skånøy E, Hestmann S (1997) A sensitive and rapid method for analysis of dissolved mono- and polysaccharides in seawater. Mar Chem 56:279–286CrossRefGoogle Scholar
  35. Norrman B, Zweifel UL, Hopkinson CS, Fry B (1995) Production and utilization of dissolved organic carbon during an experimental diatom bloom. Limnol Oceanogr 40:898–907CrossRefGoogle Scholar
  36. O’Connor MI, Piehler MF, Leech DM, Anton A, Bruno JF (2009) Warming and resource availability shift food web structure and metabolism. PLoS Biol 7:e1000178. doi: 10.1371/journal.pbio.1000178 CrossRefGoogle Scholar
  37. Ogawa H, Amagai Y, Koike I, Kaiser K, Benner R (2001) Production of refractory dissolved organic matter by bacteria. Science 292:917–920CrossRefGoogle Scholar
  38. Passow U (2002) Transparent exopolymer particles (TEP) in aquatic environments. Prog Oceanogr 55:287–333CrossRefGoogle Scholar
  39. Passow U, Alldredge AL (1995a) A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP). Limnol Oceanogr 40:1326–1335CrossRefGoogle Scholar
  40. Passow U, Alldredge AL (1995b) Aggregation of a diatom bloom in a mesocosm: the role of transparent exopolymer particles (TEP). Deep-Sea Res II 42:99–109CrossRefGoogle Scholar
  41. Qian J, Mopper K (1996) Automated high-performance, high-temperature combustion total organic carbon analyzer. Analyt Chem 68:3090–3097CrossRefGoogle Scholar
  42. Redfield AC, Ketchum BM, Richards FA (1963) The influence of organism on the composition of sea-water. In: Hill MN (ed) The sea. Wiley, New York, pp 26–77Google Scholar
  43. Riebesell U, Schulz KG, Bellerby RGJ, Botros M, Fritsche P, Meyerhöfer M, Neill C, Nondal G, Oschlies A, Wohlers J, Zöllner E (2007) Enhanced biological carbon consumption in a high CO2 ocean. Nature 450:545–549CrossRefGoogle Scholar
  44. Riebesell U, Körtzinger A, Oschlies A (2009) Sensitivities of marine carbon fluxes to ocean change. Proc Nat Acad Sci 106:20602–20609CrossRefGoogle Scholar
  45. Sarmiento JL, Hughes TMC, Stouffer RJ, Manabe S (1998) Simulated response of the ocean carbon cycle to anthropogenic warming. Nature 393:245–249CrossRefGoogle Scholar
  46. Sarmiento JL, Slater R, Barber R, Bopp L, Doney SC, Hirst AC, Kleypas J, Matear R, Mikolajewicz U, Monfray P, Soldatov V, Spall SA, Stouffer R (2004) Response of ocean ecosystems to climate warming. Glob Biogeochem Cycles 18:GB3003Google Scholar
  47. Schartau M, Engel A, Schröter J, Thoms S, Völker C, Wolf-Gladrow D (2007) Modelling carbon overconsumption and the formation of extracellular particulate organic carbon. Biogeosciences 4:433–454CrossRefGoogle Scholar
  48. Sharp JH (1974) Improved analysis for particulate organic carbon and nitrogen from seawater. Limnol Oceanogr 19:984–989CrossRefGoogle Scholar
  49. Sharples J, Ross ON, Scott BE, Greenstreet SPR, Fraser H (2006) Inter-annual variability in the timing of stratification and the spring bloom in the North-western North Sea. Cont Shelf Res 26:733–751CrossRefGoogle Scholar
  50. Siegenthaler U, Sarmiento JL (1993) Atmospheric carbon dioxide and the ocean. Nature 365:119–125CrossRefGoogle Scholar
  51. Simon M, Azam F (1989) Protein content and protein synthesis rates of planktonic marine bacteria. Mar Ecol Prog Ser 51:201–213CrossRefGoogle Scholar
  52. Sommer U, Lengfellner K (2008) Climate change and the timing, magnitude, and composition of the phytoplankton spring bloom. Glob Change Biol 14:1199–1208CrossRefGoogle Scholar
  53. Sommer U, Lewandowska A (2011) Climate change and the phytoplankton spring bloom: warming and overwintering zooplankton have similar effects on phytoplankton. Glob Change Biol 17:154–162CrossRefGoogle Scholar
  54. Sommer U, Aberle N, Engel A, Hansen T, Lengfellner K, Sandow M, Wohlers J, Zöllner E, Riebesell U (2007) An indoor mesocosm system to study the effect of climate change on the late winter and spring succession of Baltic Sea phyto- and zooplankton. Oecologia 150:655–667CrossRefGoogle Scholar
  55. Steemann Nielsen E (1952) The use of radioactive carbon (14C) for measuring production in the sea. J Cons Int Explor Mer 18:117–140Google Scholar
  56. Stoderegger K, Herndl GJ (1998) Production and release of bacterial capsular material and its subsequent utilization by marine bacterioplankton. Limnol Oceanogr 43:877–884CrossRefGoogle Scholar
  57. Thingstad TF, Hagström Å, Rassoulzadegan F (1997) Accumulation of degradable DOC in surface waters: is it caused by a malfunctioning microbial loop? Limnol Oceanogr 42:398–404CrossRefGoogle Scholar
  58. Thornton DCO, Thake B (1998) Effect of temperature on the aggregation of Skeletonema costatum (Bacillariophyceae) and the implication for carbon flux in coastal waters. Mar Ecol Prog Ser 174:223–231CrossRefGoogle Scholar
  59. Tilzer MM, Dubinsky Z (1986) Effects of temperature and day length on the mass balance of Antarctic phytoplankton. Polar Biol 7:35–42CrossRefGoogle Scholar
  60. Van den Meersche K, Middelburg JJ, Soetaert K, van Rijswijk P, Boschker HTS (2004) Carbon-nitrogen coupling and algal-bacterial interactions during an experimental bloom: modeling a 13Ctracer experiment. Limnol Oceanogr 49:862–878CrossRefGoogle Scholar
  61. Verity PG (1981) Effects of temperature, irradiance, and daylength on the marine diatom Leptocylindrus danicus cleve. I. Photosynthesis and cellular composition. J Exp Mar Biol Ecol 55:79–91CrossRefGoogle Scholar
  62. Wiltshire KH, Manly BFJ (2004) The warming trend at Helgoland Roads, North Sea: phytoplankton response. Helgol Mar Res 58:269–273CrossRefGoogle Scholar
  63. Wohlers J (2009) The impact of climate change on phytoplankton-bacterioplankton interactions. Dissertation, Christian-Albrechts-University, Kiel, GermanyGoogle Scholar
  64. Wohlers J, Engel A, Zöllner E, Breithaupt P, Jürgens K, Hoppe HG, Sommer U, Riebesell U (2009) Changes in biogenic carbon flow in response to sea surface warming. Proc Nat Acad Sci 106:7067–7072CrossRefGoogle Scholar
  65. Wohlers-Zöllner J, Breithaupt P, Walther K, Jürgens K, Riebesell U (2011) Temperature and nutrient stoichiometry interactively modulate organic matter cycling in a pelagic algal–bacterial community. Limnol Oceanogr 56:599–610CrossRefGoogle Scholar
  66. Wolfstein K, Brouwer JFC, Stal LJ (2002) Biochemical partitioning of photosynthetically fixed carbon by benthic diatoms during short-term incubations at different irradiances. Mar Ecol Prog Ser 245:21–31CrossRefGoogle Scholar
  67. Zöllner E, Hoppe HG, Sommer U, Juergens K (2009) Effect of zooplankton-mediated trophic cascades on marine microbial food web components (bacteria, nanoflagellates, ciliates). Limnol Oceanogr 54:262–275CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Julia Wohlers-Zöllner
    • 1
    • 4
  • Antje Biermann
    • 1
  • Anja Engel
    • 2
    • 6
  • Petra Dörge
    • 1
    • 5
  • Aleksandra M. Lewandowska
    • 1
  • Markus von Scheibner
    • 3
  • Ulf Riebesell
    • 1
  1. 1.Helmholtz Centre for Ocean Research Kiel (GEOMAR)KielGermany
  2. 2.Alfred Wegener Institute for Polar and Marine ScienceBremerhavenGermany
  3. 3.Leibniz Institute for Baltic Sea ResearchRostock-WarnemündeGermany
  4. 4.University of BergenBergenNorway
  5. 5.University Medical Centre Schleswig–Holstein (UKSH)KielGermany
  6. 6.Helmholtz Centre for Ocean Research Kiel (GEOMAR)KielGermany

Personalised recommendations