Skip to main content
Log in

Environmental cues and constraints affecting the seasonality of dominant calanoid copepods in brackish, coastal waters: a case study of Acartia, Temora and Eurytemora species in the south-west Baltic

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Information on physiological rates and tolerances helps one gain a cause-and-effect understanding of the role that some environmental (bottom–up) factors play in regulating the seasonality and productivity of key species. We combined the results of laboratory experiments on reproductive success and field time series data on adult abundance to explore factors controlling the seasonality of Acartia spp., Eurytemora affinis and Temora longicornis, key copepods of brackish, coastal and temperate environments. Patterns in laboratory and field data were discussed using a metabolic framework that included the effects of ‘controlling’, ‘masking’ and ‘directive’ environmental factors. Over a 5-year period, changes in adult abundance within two south-west Baltic field sites (Kiel Fjord Pier, 54°19′89N, 10°09′06E, 12–21 psu, and North/Baltic Sea Canal NOK, 54°20′45N, 9°57′02E, 4–10 psu) were evaluated with respect to changes in temperature, salinity, day length and chlorophyll a concentration. Acartia spp. dominated the copepod assemblage at both sites (up to 16,764 and 21,771 females m−3 at NOK and Pier) and was 4 to 10 times more abundant than E. affinis (to 2,939 m−3 at NOK) and T. longicornis (to 1,959 m−3 at Pier), respectively. Species-specific salinity tolerance explains differences in adult abundance between sampling sites whereas phenological differences among species are best explained by the influence of species-specific thermal windows and prey requirements supporting survival and egg production. Multiple intrinsic and extrinsic (environmental) factors influence the production of different egg types (normal and resting), regulate life-history strategies and influence match–mismatch dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adrian R, Hansson S, Sandin B, De Stasio B, Larsson U (1999) Effects of food availability and predation on a marine zooplankton community—a study on copepods in the Baltic Sea. Int Rev Hydrobiol 84:609–626

    Google Scholar 

  • Ambler JW (1985) Seasonal factors affecting egg production and viability of eggs of Acartia tonsa Dana from East Lagoon, Galveston, Texas. Estuar Coast Shelf Sci 20:743–760

    Article  Google Scholar 

  • Ambler JW (1986) Effect of food quantity and quality on egg production of Acartia tonsa Dana from East Lagoon, Galveston, Texas. Estuar Coast Shelf Sci 23:183–196

    Article  CAS  Google Scholar 

  • Andersen CM, Nielsen TG (1997) Hatching rate of the egg-carrying estuarine copepod Eurytemora affinis. Mar Ecol Prog Ser 160:283–289

    Article  Google Scholar 

  • Aro E (1989) A review of fish migration patterns in the Baltic. Rapp P- v Réun Cons Int Explor Mer 190:72–96

    Google Scholar 

  • Attrill MJ (2002) A testable linear model for diversity trends in estuaries. J Animal Ecol 71:262–269

    Article  Google Scholar 

  • Ban S (1992) Effects of photoperiod, temperature, and population density on induction of diapause egg production in Eurytemora affinis (Copepoda: Calanoida) in Lake Ohnuma, Hokkaido, Japan. J Crustacean Biol 12:361–367

    Article  Google Scholar 

  • Ban S (1994) Effect of temperature and food concentration on post-embryonic development, egg production and adult body size of calanoid copepod Eurytemora affinis. J Plankton Res 16:721–735

    Article  Google Scholar 

  • Baumann H, Peck MA, Götze E, Temming A (2007) Starving early juvenile sprat Sprattus sprattus (L.) in western Baltic coastal waters: evidence from combined field and laboratory observations in August and September 2003. J Fish Biol 70:853–866

    Article  Google Scholar 

  • Brylinski JM (1981) Report on the presence of Acartia tonsa Dana (Copepoda) in the harbour of Dunkirk (France) and its geographical distribution in Europe. J Plankton Res 3:255–260

    Article  Google Scholar 

  • Cailleaud K, Maillet G, Budzinski H, Souissi S, Forget-Leray J (2007) Effects of salinity and temperature on the expression of enzymatic biomarkers in Eurytemora affinis (Calanoida, Copepoda). Comp Biochem Physiol A 147:841–849

    Article  CAS  Google Scholar 

  • Calliari D, Andersen Borg MC, Thor P, Gorokhova E, Tiselius P (2008) Instantaneous salinity reductions affect the survival and feeding rates of the co-occurring copepods Acartia tonsa Dana and A. clausi Giesbrecht differently. J Exp Mar Biol Ecol 362:18–25

    Article  CAS  Google Scholar 

  • Casini M, Kornilovs G, Cardinale M, Möllmann C, Grygiel W, Jonsson P, Raid T, Flinkman J, Feldman V (2011) Spatial and temporal density dependence regulates the condition of central Baltic Sea clupeids: compelling evidence using an extensive international acoustic survey. Popul Ecol 53:511–523

    Article  Google Scholar 

  • Castellani C, Altunbaş Y (2006) Factors controlling the temporal dynamics of egg production in the copepod Temora longicornis. Mar Ecol Prog Ser 308:143–153

    Article  CAS  Google Scholar 

  • Castellani C, Lucas IAN (2003) Seasonal variation in egg morphology and hatching success in the calanoid copepods Temora longicornis, Acartia clausi and Centropages hamatus. J Plankton Res 25:527–537

    Article  Google Scholar 

  • Castro-Longoria E, Williams JA (1999) The production of subitaneous and diapause eggs: a reproductive strategy for Acartia bifilosa (Copepoda: Calanoida) in Southampton Water, UK. J Plankton Res 21:65–84

    Article  Google Scholar 

  • Cervetto G, Gaudy R, Pagano M (1999) Influence of salinity on the distribution of Acartia tonsa (Copepoda, Calanoida). J Exp Mar Biol Ecol 239:33–45

    Article  Google Scholar 

  • Chen F, Marcus NH (1997) Subitaneous, diapause, and delayed-hatching eggs of planktonic copepods from the northern Gulf of Mexico: morphology and hatching success. Mar Biol 127:587–597

    Article  Google Scholar 

  • Chinnery FE, Williams JA (2003) Photoperiod and temperature regulation of diapause egg production in Acartia bifilosa from Southampton Water. Mar Ecol Prog Ser 263:149–157

    Article  Google Scholar 

  • Christiansen B (1988) Vergleichende Untersuchungen zur Populationsdynamik von Eurytemora affinis POPPE und Acartia tonsa DANA, Copepoda, in der Schlei. PhD thesis, University Hamburg, Hamburg

  • Conover RJ (1988) Comparative life histories in the genera Calanus and Neocalanus in high latitudes of the northern hemisphere. Hydrobiologia 167(168):127–142

    Article  Google Scholar 

  • Davis CC (1976) Overwintering strategies of common planktic copepods in some North Norway fjords and sounds. Astarte 9:37–42

    Google Scholar 

  • Devreker D, Souissi S, Seuront L (2004) Development and mortality of the first naupliar stages of Eurytemora affinis (Copepoda, Calanoida) under different conditions of salinity and temperature. J Exp Mar Biol Ecol 303:31–46

    Article  Google Scholar 

  • Devreker D, Souissi S, Forget-Leray J, Leboulenger F (2007) Effects of salinity and temperature on the post-embryonic development of Eurytemora affinis (Copepoda; Calanoida) from the Seine estuary: a laboratory study. J Plankton Res 29(Supplement I):i117–i133

    Google Scholar 

  • Devreker D, Souissi S, Winkler G, Forget-Leray J, Leboulenger F (2009) Effects of salinity, temperature and individual variability on the reproduction of Eurytemora affinis (Copepoda; Calanoida) from the Seine estuary: a laboratory study. J Exp Mar Biol Ecol 368:113–123

    Article  Google Scholar 

  • Dickmann M, Möllmann C, Voss R (2007) Feeding ecology of Central Baltic sprat (Sprattus sprattus L.) larvae in relation to zooplankton dynamics—implications for survival. Mar Ecol Prog Ser 324:277–289

    Article  Google Scholar 

  • Diekmann ABS, Peck MA, Holste L, John MA, Campbell RW (2009) Variation in diatom biochemical composition during a simulated bloom and its effect on copepod production. J Plankton Res 31:1391–1405

    Article  CAS  Google Scholar 

  • Drillet G, Iversen MH, Sørensen TF, Ramløc H, Lund T, Hansen BW (2006) Effect of cold storage upon egs of a calanoid copepod, Acartia tonsa (Dana) and their offspring. Aquaculture 254:714–729

    Article  Google Scholar 

  • Drillet G, Goetze E, Jepsen PM, Højgaard JK, Hansen BW (2008) Strain-specific vital rates in four Acartia tonsa cultures, I: strain origin, genetic differentiation and egg survivorship. Aquaculture 280:109–116

    Article  Google Scholar 

  • Drillet G, Hansen BW, Kiørboe T (2011) Resting egg production induced by food limitation in the calanoid copepod Acartia tonsa. Limnol Oceanogr 56(6):2064–2070

    Article  Google Scholar 

  • Dur G, Souissi S, Devreker D, Ginot V, Schmidt FG, Hwang J-S (2009) An individual-based model to study the reproduction of egg bearing copepods: application to Eurytemora affinis (Copepoda Calanoida) from the Seine estuary, France. Ecol Modell 220:1073–1089

    Article  Google Scholar 

  • Durbin EG, Durbin AG, Smayada TJ, Verity PG (1983) Food limitation of production by adult Acartia tonsa in Narragansett Bay, Rhode Island. Limnol Oceanogr 28:1199–1213

    Article  Google Scholar 

  • Dutz J, Mohrholz V, Peters J, Renz J, Alheit J (2004a) Identification of critical stages in the population dynamics of key copepod species in the Bornholm Basin (Baltic Sea): potential linkages to physical forcing and climate variability. Int Counc Explor Sea Cph CM L12:1–11

    Google Scholar 

  • Dutz J, Mohrholz V, Peters J, Renz J, Alheit J (2004b) A strong impact of winter temperature on spring recruitment of a key copepod species in the Bornholm Basin: potential linkages to climate variability. GLOBEC Int Newsl 10(1):13–14

    Google Scholar 

  • Dutz J, Koski M, Jonasdottir SH (2008) Copepod reproduction is unaffected by diatom aldehydes or lipid composition. Limnol Oceanogr 53:225–235

    Article  CAS  Google Scholar 

  • Farmer L, Reeve MR (1978) Role of the free amino acid pool of the copepod Acartia tonsa in adjustment to salinity change. Mar Biol 48:311–316

    Article  Google Scholar 

  • Flinkman J, Vuorinen I, Christiansen M (1994) Calanoid copepod eggs survive passage through fish digestive tracts. ICES J Mar Sci 51:127–129

    Article  Google Scholar 

  • Fransz HG (1975) The spring development of calanoid copepod populations in Dutch coastal waters as related to primary production. In: 10th European symposium on marine biology, Ostend, Belgium, 17–23 Sept. 2:247–269

  • Fransz HG, Gonzalez SR (1990) Daily egg production of Temora longicornis (Copepoda, Calanoida) during winter and early spring in the Marsdiep (southern North Sea). Hydrobiol Bull 25:61–64

    Article  Google Scholar 

  • Fry FEJ (1971) The effect of environmental factors on the physiology of fish. In: Hoar WS, Randall DJ, Brett JR (eds) Fish physiology, vol 6. Academic Press, New York

    Google Scholar 

  • Gasparini S, Castel J (1997) Autotrophic and heterotrophic nanoplankton in the diet of the estuarine copepods Eurytemora affinis and Acartia bifilosa. J Plankton Res 19:877–890

    Article  Google Scholar 

  • Grice GD, Marcus NH (1981) Dormant eggs of marine copepods. Oceanogr Mar Biol Annu Rev 19:125–140

    Google Scholar 

  • Gyllenberg G (1980) Feeding of the copepod Eurytemora hirundoides (Crustacea) on different algal cultures. Ann Zool Fennici 17:181–184

    Google Scholar 

  • Gyllenberg G, Lundqvist G (1979) The effects of temperature and salinity on the oxygen consumption of Eurytemora hirundoides (Crustacea, Copepoda). Ann Zool Fennici 16:205–208

    Google Scholar 

  • Halsband C, Hirche HJ (2001) Reproductive cycles of dominant calanoid copepods in the North Sea. Mar Ecol Prog Ser 209:219–229

    Article  Google Scholar 

  • Hansen BW, Drillet G, Kozmér A, v. Madsen K, Pedersen MF, Sørensen TF (2010) Temperature effects on copepod egg hatching: does acclimatization matter? J Plankton Res 32:305–315

    Google Scholar 

  • Hansen BW, Drillet G, Pedersen MF, Sjøgreen KP, Vismann B (2012) Do Acartia tonsa (Dana) eggs regulate their volume and osmolality as salinity changes? J Comp Physiol B. doi:10.1007/s00360-012-0646-y

  • Hernroth L, Ackefors H (1979) The zooplankton of the Baltic Proper. Report, Fishery Board of Sweden, Institute Marine Research 2:1–60

  • Hinrichsen H–H, St. John M, Aro E, Grønkjær P, Voss R (2001) Testing the larval drift hypothesis in the Baltic Sea retention versus dispersion caused by wind-driven circulation. ICES J Mar Sci 58:973–984

  • Hirche HJ (1992) Egg production of Eurytemora affinis—effect of k-strategy. Estuar Coast Shelf Sci 35:395–407

    Article  Google Scholar 

  • Holmstrup M, Overgaard J, Sørensen TF, Drillet G, Hansen BW, Ramløv H, Engell-Sørensen K (2006) Influence of storage conditions on viability of quiescent copepod eggs (Acartia tonsa Dana): effects of temperature, salinity and anoxia. Aquac Res 37:625–631

    Article  Google Scholar 

  • Holste L (2010) The impact of key environmental factors on the vital rates of two Baltic Sea copepods. PhD thesis, University Hamburg, Hamburg

  • Holste L, Peck MA (2006) The effects of temperature and salinity on egg production and hatching success of Baltic Acartia tonsa (Copepoda: Calanoida): a laboratory investigation. Mar Biol 148:1061–1070

    Article  Google Scholar 

  • Holste L, St John MA, Peck MA (2009) The effects of temperature and salinity on reproductive success of Temora longicornis in the Baltic Sea: a copepod coping with a tough situation. Mar Biol 156:527–540

    Article  Google Scholar 

  • Houde SEL, Roman MR (1987) Effects of food quality on the functional ingestion response of the copepod Acartia tonsa. Mar Ecol Prog Ser 40:69–77

    Article  Google Scholar 

  • Huey RB, Kingsolver JG (1993) Evolution of resistance to high temperature in ectotherms. Am Nat 142(Suppl: Evolutionary Responses to Environmental Stress):21–46

  • Javidpour J, Molinero JC, Lehmann A, Hansen T, Sommer U (2009) Annual assessment of the predation of Mnemiopsis leidyi in a new invaded environment, the Kiel Fjord (Western Baltic Sea): a matter of concern? J Plankton Res 31:729–738

    Article  CAS  Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natura phytoplankton. Biochemie und Physiologie der Pflanzen 167:191–194

    CAS  Google Scholar 

  • Katajisto T (1996) Copepod eggs survive a decade in the sediments of the Baltic Sea. Hydrobiologia 320:153–159

    Article  Google Scholar 

  • Katajisto T (2006) Benthic resting eggs in the life cycles of calanoid copepods in the northern Baltic Sea. W. & A. de Nottbeck Foundation Sci Rep 29:1–46

    Google Scholar 

  • Katajisto T, Viitasalo M, Koski M (1998) Seasonal occurrence and hatching of calanoid eggs in sediments of the northern Baltic Sea. Mar Ecol Prog Ser 163:133–143

    Article  Google Scholar 

  • Klein Breteler WCM, Gonzalez SR (1982) Influence of cultivation and food concentration on body length of calanoid copepods. Mar Biol 71:157–161

    Article  Google Scholar 

  • Koski M, Kuosa H (1999) The effect of temperature, food concentration and female size on the egg production of the planktonic copepod Acartia bifilosa. J Plankton Res 21:1779–1789

    Article  Google Scholar 

  • Krause M, Dippner JW, Beil J (1995) A review of hydrographic controls on the distribution of zooplankton biomass and species in the North Sea with particular reference to a survey conducted in January–March 1987. Prog Oceanogr 35:81–152

    Article  Google Scholar 

  • Lance J (1963) The salinity tolerance of some estuarine planktonic copepods. Limnol Oceanogr 8:440–449

    Article  Google Scholar 

  • Landry MR (1978) Population dynamics and production of a planktonic marine copepod, Acartia clausii, in a small temperate lagoon on San Juan Island, Washington. Int Rev Ges Hydrobiol 63:77–119

    Article  Google Scholar 

  • Madhupratap M, Nehring S, Lenz J (1996) Resting eggs of zooplankton (Copepoda and Cladocera) from the Kiel Bay and adjacent waters (southwestern Baltic). Mar Biol 125:77–87

    Article  Google Scholar 

  • Maltby L, Naylor C, Calow P (1990) Effect of stress on a freshwater benthic detritivore: scope for growth in Gammarus pulex. Ecotoxicol Environ Saf 19:285–291

    Article  CAS  Google Scholar 

  • Maps F, Runge JA, Zakardjian B, Joly P (2005) Egg production and hatching success of Temora longicornis (Copepoda, Calanoida) in the southern Gulf of St. Lawrence. Mar Ecol Prog Ser 285:117–128

    Article  Google Scholar 

  • Mauchline J (1998) The biology of calanoid copepods. Elsevier Academic, Oxford

    Google Scholar 

  • May L (1987) Effect of incubation temperature on the hatching of rotifer resting eggs collected from sediments. Hydrobiologia 147:335–338

    Article  Google Scholar 

  • Meier HEM (2006) Baltic Sea climate in the late twenty first century: a dynamical downscaling approach using two global models and two emission scenarios. Clim Dyn 27:39–68

    Article  Google Scholar 

  • Möllmann C, Köster FW (2002) Population dynamics of calanoid copepods and the implications of their predation by clupeid fish in the Central Baltic Sea. J Plankton Res 24:959–977

    Article  Google Scholar 

  • Möllmann C, Müller-Karulis B, Kornilovs G, John MA (2008) Effects of climate and overfishing on zooplankton dynamics and ecosystem structure: regime shifts, trophic cascade, and feedback loops in a simple ecosystem. ICES J Mar Sci 65:302–310

    Article  Google Scholar 

  • Mouny P, Dauvin JC (2002) Environmental control of mesozooplankton community structure in the Seine estuary (English Channel). Oceanol Acta 25:13–22

    Article  Google Scholar 

  • Norrbin MF (1994) Seasonal patterns in gonad maturation, sex ratio and size in some small, high-latitude copepods: implications for overwintering tactics. J Plankton Res 16:115–131

    Article  Google Scholar 

  • Norrbin MF (1996) Timing of diapause in relation to the onset of winter in the high-latitude copepods Pseudocalanus acuspes and Acartia longiremis. Mar Ecol Prog Ser 142:99–109

    Article  Google Scholar 

  • Peck MA, Holste L (2006) Effects of salinity, photoperiod and adult stocking density on egg production and hatching success of Acartia tonsa (Calanoida:Copepoda): optimizing intensive cultures. Aquaculture 255:341–350

    Article  Google Scholar 

  • Peck MA, Ewest B, Holste L, Kanstinger P, Martin M (2008) Impacts of light regime on egg harvests and 48-h egg hatching success of Acartia tonsa (Copepoda: Calanoida) within intensive culture. Aquaculture 275:102–107

    Article  Google Scholar 

  • Peters J (2006) Lipids in key copepod species of the Baltic Sea and North Sea—implications for life cycles, trophodynamics and food quality. PhD thesis, University Bremen, Bremen

  • Peters J, Dutz J, Hagen W (2007) Differences in life-cycle strategies and trophic niches of the copepods Temora longicornis and Acartia longiremis in the Central Baltic Sea—a success story. GLOBEC Int Newsl 13:59–61

    Google Scholar 

  • Peterson WT, Bellantoni DC (1987) Relationships between water-column stratification, phytoplankton cell size and copepod fecundity in Long Island Sound and off central Chile. S Afr J Mar Sci 5:411–421

    Article  Google Scholar 

  • Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322:690–692

    Article  Google Scholar 

  • Pörtner HO, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315:95–97

    Article  Google Scholar 

  • Pörtner HO, Peck MA (2010) Climate change impacts on fish and fisheries: towards a cause and effect understanding. J Fish Biol 77:1745–1779

    Article  Google Scholar 

  • Postel L (2005) Zooplankton. In: Meeresumwelt 1999–2002. Bund-Länder-Messprogramm für die Meeresumwelt von Nord- und Ostsee, Hamburg

  • Rae KM, Fraser JH (1941) Continuous plankton records: the copepods of the southern North Sea 1932–37. Hull Bull Mar Ecol 1:171–238

    Google Scholar 

  • Rijnsdorp A, Peck MA, Engelhard GH, Möllmann C, Pinnegar JK (2009) Resolving the effect of climate change on fish populations. ICES J Mar Sci 66:1570–1583

    Article  Google Scholar 

  • Roman MR, Holliday DV, Sanford LP (2001) Temporal and spatial patterns of zooplankton in the Chesapeake Bay turbidity maximum. Mar Ecol Prog Ser 213:215–227

    Article  Google Scholar 

  • Rudstam LG (1988) Exploring the dynamics of herring consumption in the Baltic: applications of an energetic model of fish growth. Kieler Meeresforschung Sonderheft 6:312–322

    Google Scholar 

  • Schmidt K, Kähler P, v. Bodungen B (1998) Copepod egg production rate in the Pomeranian Bay (South Baltic Sea) as a function of phytoplankton abundance and taxonomic composition. Mar Ecol Prog Ser 174:183–195

    Article  Google Scholar 

  • Schnack S (1975) On the feeding biology of copepods (Crustacea) in Kiel Bay (in German). PhD thesis, Christian-Albrechts University, Kiel

  • Schulz J, Möllmann C, Hirche HJ (2007) Vertical zonation of the zooplankton community in the Central Baltic Sea in relation to hydrographic stratification as revealed by multivariate discriminant function- and canonical analysis. J Mar Syst 67:47–58

    Article  Google Scholar 

  • Somero GN (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J Exp Biol 213:912–920

    Article  CAS  Google Scholar 

  • Stumpp M, Melzner F, Dupont ST (2011) CO2 induced seawater acidification impacts sea urchin larval development I: elevated metabolic rates decrease scope for growth and induce developmental delay. Comp Biochem Physiol Part A Mol Integr Physiol 160:331–340

    Article  CAS  Google Scholar 

  • Sullivan BK, McManus LT (1986) Factors controlling seasonal succession of the copepods Acartia hudsonica and A. tonsa in Narragansett Bay, Rhode Island: temperature and resting egg production. Mar Ecol Prog Ser 28:121–128

    Article  Google Scholar 

  • Tackx MLM, Herman PJM, Gasparini S, Irigoien X, Billiones R, Daro MH (2003) Selective feeding of Eurytemora affinis (Copepoda, Calanoida) in temperate estuaries: model and field observations. Estuar Coast Shelf Sci 56:305–311

    Article  Google Scholar 

  • Vandekerkhove J, Declerck S, Brendonck L, Conde-Porcuna JM, Jeppesen E, De Meester L (2005) Hatching of cladoceran resting eggs: temperature and photoperiod. Freshw Biol 50:96–104

    Article  Google Scholar 

  • Viitasalo M, Katajisto T, Vuorinen I (1994) Seasonal dynamics of Acartia bifilosa and Eurytemora affinis (Copepoda: Calanoida) in relation to abiotic factors in the northern Baltic Sea. Hydrobiologia 292(293):415–422

    Google Scholar 

  • Widdows J, Phelps DK, Galloway W (1981) Measurements of physiological condition of mussels transplanted along a pollution gradient in Narragansett Bay. Mar Environ Res 4:181–194

    Article  CAS  Google Scholar 

  • Zillioux EJ, Gonzalez JG (1972) Egg dormancy in a neritic calanoid copepod and its implications to overwintering in boreal waters. In: Battaglia B (ed) Fifth European marine biology symposium. Piccin editore, Padova

    Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Karin Boos for providing the figure of the sampling site (Fig. 1) and three anonymous reviewers for their help improving the manuscript. The laboratory experiments and field research presented in this study were supported by two grants from the German Science Foundation (DFG) in the AQUASHIFT priority programme 1164 (‘RECONN’ grants awarded to MAP, MAStJ and CC). This research was also partially funded by ‘VECTORS’ (VECTORS of Change in Oceans and Seas Marine Life, Impact on Economic Sectors, EU FP7 Contract No. 266445) awarded to MAP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Berenike S. Diekmann.

Additional information

Communicated by M. Winder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diekmann, A.B.S., Clemmesen, C., St. John, M.A. et al. Environmental cues and constraints affecting the seasonality of dominant calanoid copepods in brackish, coastal waters: a case study of Acartia, Temora and Eurytemora species in the south-west Baltic. Mar Biol 159, 2399–2414 (2012). https://doi.org/10.1007/s00227-012-1955-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-1955-0

Keywords

Navigation