Advertisement

Marine Biology

, Volume 159, Issue 7, pp 1509–1525 | Cite as

Population structure and connectivity of the European conger eel (Conger conger) across the north-eastern Atlantic and western Mediterranean: integrating molecular and otolith elemental approaches

  • Alberto T. Correia
  • Ana A. Ramos
  • Filipe Barros
  • Gonçalo Silva
  • Paul Hamer
  • Pedro Morais
  • Regina L. Cunha
  • Rita Castilho
Original Paper

Abstract

Genetic variation (mtDNA) of the European conger eel, Conger conger, was compared across five locations in the north-eastern Atlantic (Madeira, Azores, South Portugal, North Portugal and Ireland) and one location in the western Mediterranean (Mallorca). Genetic diversity of conger eel was high, and differentiation among regions was not significant. Additionally, comparisons of element:Ca ratios (Sr:Ca, Ba:Ca, Mn:Ca and Mg:Ca) in otolith cores (larval phase) and edges (3 months prior to capture) among the Azores, North Portugal, Madeira and Mallorca regions for 2 years indicated that variation among regions were greater for edges than cores. Therefore, while benthic conger may display residency at regional scales, recruitment may not necessarily be derived from local spawning and larval retention. Furthermore, data from otoliths suggest a separated replenishment source for western Mediterranean and NE Atlantic stocks. The combination of genetics and otolith chemistry suggests a population model for conger eel involving a broad-scale dispersal of larvae, with limited connectivity for benthic juvenile life stages at large spatial scales, although the existence of one or multiple spawning grounds for the species remains uncertain.

Keywords

Last Glacial Maximum Mismatch Distribution Mitochondrial Control Region Pelagic Larval Duration NIST Standard Reference Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors wish to thank Francis Neat (Marine Scotland—Science; Scottish Government; Marine Laboratory, Aberdeen), Eduardo Isidro (Departamento de Oceanografia e Pescas da Universidade dos Açores) and João Delgado (Secretaria Regional das Pescas da Região Autónoma da Madeira) for providing the biological samples in Ireland, Azores and Madeira, respectively. Stewart Grant was most helpful in an early edition of the manuscript. This work was fully supported by the Portuguese Science Foundation and Technology (POCI/MAR/58837/2004 and PPCDT/MAR/58837/2004).

References

  1. Als TD, Hansen MM, Maes GE, Castonguay M, Riemann L, Aarestrup K, Munk P, Sparholt H, Hanel R, Bernatchez L (2011) All roads lead to home: panmixia of European eel in the Sargasso Sea. Mol Ecol 20:1333–1346Google Scholar
  2. Ayre DJ, Minchinton TE, Perrin C (2009) Does life history predict past and current connectivity for rocky intertidal invertebrates across a marine biogeographic barrier? Mol Ecol 18:1887–1903CrossRefGoogle Scholar
  3. Balls PW (1986) Composition of suspended particulate matter from Scottish coastal waters—geochemical implications for the transport of trace metal contaminants. Sci Total Environ 57:171–180CrossRefGoogle Scholar
  4. Balls P, Cofino W, Schmidt D, Topping G, Wilson S (1993) ICES baseline survey of trace metals in European shelf waters. ICES J Mar Sci 50:435–444CrossRefGoogle Scholar
  5. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48. www.fluxus-engineering.com Google Scholar
  6. Bath GE, Thorrold SR, Jones CM, Campana SE, McLaren JW, Lam JWH (2000) Strontium and barium uptake in aragonitic otoliths of marine fish. Geochim Cosmochim AC 64:1705–1714CrossRefGoogle Scholar
  7. Bauchot ML, Saldanha L (1986) Fishes of the northeastern Atlantic and the Mediterranean. UNESCO, ParisGoogle Scholar
  8. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188CrossRefGoogle Scholar
  9. Bergenius MAJ, Mapstone BD, Begg GA, Murchie CD (2005) The use of otolith chemistry to determine stock structure of three epinepheline serranid coral reef fishes on the great barrier reef, Australia. Fish Res 72:253–270CrossRefGoogle Scholar
  10. Bishop R, Torres J (1999) Leptocephalus energetics: metabolism and excretion. J Exp Biol 202:2485–2493Google Scholar
  11. Bonhommeau S, Chassot E, Rivot E (2008) Fluctuations in European eel (Anguilla anguilla) recruitment resulting from environmental changes in the Sargasso Sea. Fish Oceanogr 17:32–44CrossRefGoogle Scholar
  12. Bradbury IR, Campana SE, Bentzen P (2008) Estimating contemporary early life-history dispersal in an estuarine fish: integrating molecular and otolith elemental approaches. Mol Ecol 17:1438–1450CrossRefGoogle Scholar
  13. Brophy D, Jeffries TE, Danilowicz BS (2004) Elevated manganese concentrations at the cores of clupeid otoliths: possible environmental, physiological, and structural origins. Mar Biol 144:779–786CrossRefGoogle Scholar
  14. Campana SE (1999) Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar Ecol Prog Ser 188:263–297CrossRefGoogle Scholar
  15. Campana SE, Thorrold SR (2001) Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations? Can J Fish Aquat Sci 58:30–38CrossRefGoogle Scholar
  16. Campana SE, Chouinard GA, Hanson JM, Frechet A (1999) Mixing and migration of overwintering Atlantic cod (Gadus morhus) stocks near the mouth of the Gulf of St Lawrence. Can J Fish Aquat Sci 56:1873–1881Google Scholar
  17. Campana SE, Chouinard GA, Hanson JM, Fréchet A, Brattey J (2000) Otolith elemental fingerprints as biological tracers of fish stocks. Fish Res 46:343–357CrossRefGoogle Scholar
  18. Cau A, Manconi P (1983) Sex ratio and spatial displacement in Conger conger (L., 1758). Rapp P-V Reun Comm Int Explor Sci Mer Mediterr Monaco 28:93–96Google Scholar
  19. Cau A, Manconi P (1984) Relationship of feeding, reproductive cycle and bathymetric distribution in Conger conger. Mar Biol 81:147–151CrossRefGoogle Scholar
  20. Chow S, Hazama K (1998) Universal PCR primers for S7 ribosomal protein gene introns in fish. Mol Ecol 7:1255–1256Google Scholar
  21. Correia AT, Isidro EJ, Antunes C, Coimbra J (2002) Age, growth, distribution and ecological aspects of Conger conger leptocephali collected in the Azores, based on otolith analysis of premetamorphic specimens. Mar Biol 141:1141–1151CrossRefGoogle Scholar
  22. Correia AT, Antunes C, Isidro EJ, Coimbra J (2003) Changes in otolith microstructure and microchemistry during the larval development of the European conger eel (Conger conger). Mar Biol 142:777–789Google Scholar
  23. Correia AT, Antunes C, Wilson JM, Coimbra J (2006a) An evaluation of the otolith characteristics of Conger conger during metamorphosis. J Fish Biol 68:99–119CrossRefGoogle Scholar
  24. Correia AT, Faria R, Alexandrino P, Antunes C, Isidro EJ, Coimbra J (2006b) Evidence for genetic differentiation in the European conger eel Conger conger based on mitochondrial DNA analysis. Fish Sci 72:20–27CrossRefGoogle Scholar
  25. Correia AT, Manso S, Coimbra J (2009) Age, growth and reproductive biology of the European conger eel (Conger conger) from the Atlantic Iberian waters. Fish Res 99:196–202CrossRefGoogle Scholar
  26. Correia AT, Barros F, Sial A (2011) Stock discrimination of European conger eel (Conger conger L.) using otolith stable isotope ratios. Fish Res 108:88–94CrossRefGoogle Scholar
  27. Davis WJ (1993) Contamination of coastal versus open ocean surface waters: a brief meta-analysis. Mar Pollut Bull 26:128–134CrossRefGoogle Scholar
  28. De Leeuw J (1977) Applications of convex analysis to multidimensional scaling. In: Barra J, Brodeau F, Romier G, Cutsem BV (eds) Recent developments in statistics. North Holland Publishing Company, Amsterdam, The Netherlands, pp 133–145Google Scholar
  29. Dehairs F, Lambert CE, Chesselet R, Risler N (1987) The biological production of marine suspended barite and the barium cycle in the western Mediterranean sea. Biogeochemistry 4:119–139CrossRefGoogle Scholar
  30. Dias JA, Rodrigues A, Magalhães F (1997) Evolução da linha de costa em Portugal, desde o último máximo glaciário até a actualidade: síntese dos conhecimentos. Estudos do Quaternário 1:53–66Google Scholar
  31. Dittman A, Quinn T (1996) Homing in Pacific salmon: mechanisms and ecological basis. J Exp Biol 199:83Google Scholar
  32. Dupanloup I, Schneider S, Langaney A, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581CrossRefGoogle Scholar
  33. Elsdon TS, Gillanders BM (2006) Temporal variability in strontium, calcium, barium, and manganese in estuaries: implications for reconstructing environmental histories of fish from chemicals in calcified structures. Estuar Coast Shelf Sci 66:147–156CrossRefGoogle Scholar
  34. Elsdon TS, Wells BK, Campana SE, Gillanders BM, Jones CM, Limburg KE, Secor DH, Thorrold SR, Walther BD (2008) Otolith chemistry to describe movements and life-history parameters of fishes: hypotheses, assumptions, limitations and inferences. Oceanogr Mar Biol 46:297–330CrossRefGoogle Scholar
  35. Ely B, Vinas J, Bremer JRA, Black D, Lucas L, Covello K, Labrie AV, Thelen E (2005) Consequences of the historical demography on the global population structure of two highly migratory cosmopolitan marine fishes: the yellowfin tuna (Thunnus albacares) and the skipjack tuna (Katsuwonus pelamis). BMC Evol Biol 5:19CrossRefGoogle Scholar
  36. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567CrossRefGoogle Scholar
  37. Fannon E, Fahy E, O’Reilly R (1990) Maturation in female conger eel, Conger conger (L.). J Fish Biol 36:275–276CrossRefGoogle Scholar
  38. Figueiredo MJ, Figueiredo I, Correia J (1996) Caracterizacão geral dos recursos de profundidade em estudo no IPIMAR. Relatorio Cientifico Tecnico Instituto Investigacão Maritima 21Google Scholar
  39. Floeter SR, Rocha LA, Robertson DR, Joyeux JC, Smith-Vaniz WF, Wirtz P, Edwards AJ, Barreiros JP, Ferreira CEL, Gasparini JL, Brito A, Falcon JM, Bowen BW, Bernardi G (2008) Atlantic reef fish biogeography and evolution. J Biogeogr 35:22–47Google Scholar
  40. Fowler AJ, Campana SE, Jones CM, Thorrold SR (1995) Experimental assessment of the effect of temperature and salinity on elemental composition of otoliths using laser ablation ICPMS. Can J Fish Aquat Sci 52:1431–1441CrossRefGoogle Scholar
  41. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925Google Scholar
  42. Galarza J, Carreras-Carbonell J, Macpherson E, Pascual M, Roques S, Turner G, Rico C (2009) The influence of oceanographic fronts and early-life-history traits on connectivity among littoral fish species. Proc Natl Acad Sci USA 106:1473–1478CrossRefGoogle Scholar
  43. Gillanders BM (2002) Temporal and spatial variability in elemental composition of otoliths: implications for determining stock identity and connectivity of populations. Can J Fish Aquat Sci 59:669–679CrossRefGoogle Scholar
  44. Hamer PA, Jenkins GP, Gillanders BM (2003) Otolith chemistry of juvenile snapper Pagrus auratus in Victorian waters: natural chemical tags and their temporal variation. Mar Ecol Prog Ser 263:261–273CrossRefGoogle Scholar
  45. Hamer PA, Jenkins GP, Coutin P (2006) Barium variation in Pagrus auratus (Sparidae) otoliths: a potential indicator of migration between an embayment and ocean waters in south-eastern Australia. Estuar Coast Shelf Sci 68:686–702CrossRefGoogle Scholar
  46. Hayward PJ, Ryland JS (1995) Handbook of the marine fauna of North-West Europe. Oxford University Press, OxfordGoogle Scholar
  47. Hellberg ME, Burton RS, Neigel JE, Palumbi SR (2002) Genetic assessment of connectivity among marine populations. Bull Mar Sci 70:273–290Google Scholar
  48. Hudson R (2000) A new statistic for detecting genetic differentiation. Genetics 155:2011–2014Google Scholar
  49. Khélifi N, Sarnthein M, Andersen N, Blanz T, Frank M, Garbe-Schonberg D, Haley B, Stumpf R, Weinelt M (2009) A major and long-term Pliocene intensification of the Mediterranean outflow, 3.5–3.3 Ma ago. Geology 37:811–814CrossRefGoogle Scholar
  50. Kimura Y, Ishikawa S, Tokai T, Nishida M, Tsukamoto K (2004) Early life history characteristics and genetic homogeneity of Conger myriaster leptocephali along the east coast of central Japan. Fish Res 70:61–69CrossRefGoogle Scholar
  51. Klanten O, Choat J, van Herwerden L (2007) Extreme genetic diversity and temporal rather than spatial partitioning in a widely distributed coral reef fish. Mar Biol 150:659–670CrossRefGoogle Scholar
  52. Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196–6200CrossRefGoogle Scholar
  53. Kruskal J (1964) Nonmetric multidimensional scaling: a numerical method. Psychometrika 29:115–129CrossRefGoogle Scholar
  54. Lahaye Y, Lambert D, Walters S (1997) Ultraviolet laser sampling and high resolution inductively coupled plasma-mass spectrometry of NIST and BCR-2G glass reference materials. Geostandard Newslett 21:205–214CrossRefGoogle Scholar
  55. Leis JM (2006) Are larvae of demersal fishes plankton or nekton? Advanc Mar Biol 51:57–141CrossRefGoogle Scholar
  56. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452Google Scholar
  57. Ludden JN, Feng R, Gauthier G, Stix J, Shi L, Francis D, Machado N, Wu G (1995) Applications of LAM-ICP-MS analysis of minerals. Can Mineral 33:419–434Google Scholar
  58. Ma T, Aoyama J, Miller MJ, Yuki Minegishi Y, Inoue GJ, Katsumi Tsukamoto K (2008) Genetic differentiation in the genus Uroconger in the Indo-Pacific region. Aquat Biol 2:29–35CrossRefGoogle Scholar
  59. Manel S, Gaggiotti O, Waples RS (2005) Assignment methods: matching biological questions with appropriate techniques. Trends Ecol Evol 20:2603–2607CrossRefGoogle Scholar
  60. Marohn L, Hilge V, Zumholz K, Klügel A, Anders H, Hanel R (2011) Temperature dependency of element incorporation into European eel (Anguilla anguilla) otoliths. Anal Bioanal Chem 399:2175–2184CrossRefGoogle Scholar
  61. Martinez P, Gonzalez EG, Castilho R, Zardoya R (2006) Genetic diversity and historical demography of Atlantic bigeye tuna (Thunnus obesus). Mol Phylogenet Evol 39:404–416CrossRefGoogle Scholar
  62. Milton DA, Chenery SR, Farmer MJ, Blaber SJM (1997) Identifying the spawning estuaries of the tropical shad, terubok Tenualosa toli, using otolith microchemistry. Mar Ecol Prog Ser 153:283–291CrossRefGoogle Scholar
  63. Mochioka N, Iwamizu M (1996) Diet of anguilloid larvae: leptocephali feed selectively on larvacean houses and fecal pellets. Mar Biol 125:447–452Google Scholar
  64. Patarnello T, Volckaert FAMJ, Castilho R (2007) Pillars of Hercules: is the Atlantic-Mediterranean transition a phylogeographical break? Mol Ecol 16:4426–4444CrossRefGoogle Scholar
  65. Patterson HM, Kingsford MJ, Mcculoch MT (2004) Elemental signatures of Pomacentrus coelestis at multiple spatial scales on the Great Barrier Reef, Australia. Mar Ecol Prog Ser 270:229–239CrossRefGoogle Scholar
  66. Pearce NJ, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandard Newslett 21:115–144CrossRefGoogle Scholar
  67. Posada D (2008a) Collapse v 1.5. http://darwin.uvigo.es/software/collapse.html
  68. Posada D (2008b) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256CrossRefGoogle Scholar
  69. Proctor CH, Thresher RE, Gunn JS, Mills DJ, Harrowfield IR, Sie SH (1995) Stock structure of the southern bluefin tuna Thunnus maccoyi: an investigation based on probe microanalysis of otolith composition. Mar Biol 122:511–526CrossRefGoogle Scholar
  70. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, CambridgeGoogle Scholar
  71. Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19:2092–2100CrossRefGoogle Scholar
  72. Reis-Santos P, Vasconcelos RP, Ruano M, Latkoczy C, Gunther D, Costa MJ, Cabral H (2008) Interspecific variations of otolith chemistry in estuarine fish nurseries. J Fish Biol 72:2595–2614CrossRefGoogle Scholar
  73. Rex MA, McClain CR, Johnson N, Etter RJ, Allen J, Bouchet P, Warén A (2005) A source-sink hypothesis for abyssal biodiversity. Am Nat 165:163–178CrossRefGoogle Scholar
  74. Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569Google Scholar
  75. Ruttenberg BI, Hamilton SL, Hickford MJH, Paradis GL, Sheehy MS, Standish JD, Ben-Tzvi O, Warner RR (2005) Elevated levels of trace elements in cores of otoliths and their potential for use as natural tags. Mar Ecol Prog Ser 297:273–281CrossRefGoogle Scholar
  76. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. CSHL Press, New YorkGoogle Scholar
  77. Sbaihi M, Fouchereau-Peron M, Meunier F, Elie P, Mayer I, Burzawa-Gerard E, Vidal B, Dufour S (2001) Reproductive biology of conger eel from the south coast of Brittany, France and comparison with the European eel. J Fish Biol 59:302–318Google Scholar
  78. Selkoe KA, Henzler CM, Gaines SD (2008) Seascape genetics and the spatial ecology of marine populations. Fish Fish 9:363–377CrossRefGoogle Scholar
  79. Slatkin M, Hudson RR (1991) Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129:555–562Google Scholar
  80. Smith SJ, Campana SE (2010) Integrated stock mixture analysis for continuous and categorical data, with application to genetic–otolith combinations. Can J Fish Aquat Sci 67:1533–1567CrossRefGoogle Scholar
  81. Strehlow B, Antunes C, Niermann U, Tesch FW (1998) Distribution and ecological aspects of leptocephali collected 1979–1994 in North and Central Atlantic. I. Congridae. Helgol Meeresunter 52:85–102CrossRefGoogle Scholar
  82. Sullivan SO, Moriarty C, Fitsgerard RD, Davenport J, Mulcahy MF (2003) Age, growth and reproductive status of the European conger eel Conger conger (L.) in Irish coastal waters. Fish Res 64:55–69CrossRefGoogle Scholar
  83. Swearer SE, Forrester GE, Steele MA, Brooks AJ, Lea DW (2003) Spatio-temporal and interspecific variation in otolith trace-elemental fingerprints in a temperate estuarine fish assemblage. Estuar Coast Shelf Sci 56:1111–1123CrossRefGoogle Scholar
  84. Tajima F (1989) Statistical testing for the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595Google Scholar
  85. Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. Lect Math Life Sci 17:57–86Google Scholar
  86. Tero N, Aspi J, Siikamaki P, Jakalaniemi A, Tuomi J (2003) Genetic structure and gene flow in a metapopulation of an endangered plant species, Silene tatarica. Mol Ecol 12:2073–2085CrossRefGoogle Scholar
  87. Thresher RE (1999) Elemental composition of otoliths as a stock delineator in fishes. Fish Res 43:165–204CrossRefGoogle Scholar
  88. Thresher RE, Proctor CH, Gunn JS, Harrowfield IR (1994) An evaluation of electron probe microanalysis of otoliths for stock delineation and identification of nursery areas in a southern temperate groundfish, Nemadactylus macropterus (Cheilodactylidae). Fish Bull 92:817–840Google Scholar
  89. Tsukamoto K (2006) Oceanic biology: spawning of eels near a seamount. Nature 439:929CrossRefGoogle Scholar
  90. Warner RR, Stephen E, Swearer SE, Caselle JE, Sheehy M, Paradis G (2005) Natal trace-elemental signatures in the otoliths of an open-coast fish. Limnol Oceanogr 50:1529–1542Google Scholar
  91. Yoshinaga J, Atsuko N, Masatoshi M, Edmonds JS (2000) Fish otolith reference material for quality assurance of chemical analyses. Mar Chem 69:91–97CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Alberto T. Correia
    • 1
    • 2
  • Ana A. Ramos
    • 3
  • Filipe Barros
    • 1
  • Gonçalo Silva
    • 3
  • Paul Hamer
    • 4
  • Pedro Morais
    • 1
    • 5
  • Regina L. Cunha
    • 3
  • Rita Castilho
    • 3
  1. 1.Centro Interdisciplinar de Investigação Marinha e Ambiental, CIIMAR-CIMAR Laboratório AssociadoPortoPortugal
  2. 2.Faculdade de Ciências da Saúde (FCS)Centro Interdisciplinar de Alterações Globais e Bioengenharia (CIAGEB), Universidade Fernando Pessoa (UFP)PortoPortugal
  3. 3.CCMAR-CIMAR Laboratório AssociadoCentro de Ciências do Mar, Universidade do AlgarveFaroPortugal
  4. 4.Department of Primary IndustriesFisheries Research BranchQueenscliffAustralia
  5. 5.International Centre for Coastal EcohydrologyFaroPortugal

Personalised recommendations