Marine Biology

, Volume 160, Issue 8, pp 1845–1861 | Cite as

Impacts of seawater acidification on mantle gene expression patterns of the Baltic Sea blue mussel: implications for shell formation and energy metabolism

  • Anne K. HüningEmail author
  • Frank Melzner
  • Jörn Thomsen
  • Magdalena A. Gutowska
  • Lars Krämer
  • Stephan Frickenhaus
  • Philip Rosenstiel
  • Hans-Otto Pörtner
  • Eva E. R. Philipp
  • Magnus Lucassen
Original Paper


Marine organisms have to cope with increasing CO2 partial pressures and decreasing pH in the oceans. We elucidated the impacts of an 8-week acclimation period to four seawater pCO2 treatments (39, 113, 243 and 405 Pa/385, 1,120, 2,400 and 4,000 μatm) on mantle gene expression patterns in the blue mussel Mytilus edulis from the Baltic Sea. Based on the M. edulis mantle tissue transcriptome, the expression of several genes involved in metabolism, calcification and stress responses was assessed in the outer (marginal and pallial zone) and the inner mantle tissues (central zone) using quantitative real-time PCR. The expression of genes involved in energy and protein metabolism (F-ATPase, hexokinase and elongation factor alpha) was strongly affected by acclimation to moderately elevated CO2 partial pressures. Expression of a chitinase, potentially important for the calcification process, was strongly depressed (maximum ninefold), correlating with a linear decrease in shell growth observed in the experimental animals. Interestingly, shell matrix protein candidate genes were less affected by CO2 in both tissues. A compensatory process toward enhanced shell protection is indicated by a massive increase in the expression of tyrosinase, a gene involved in periostracum formation (maximum 220-fold). Using correlation matrices and a force-directed layout network graph, we were able to uncover possible underlying regulatory networks and the connections between different pathways, thereby providing a molecular basis of observed changes in animal physiology in response to ocean acidification.


Chitin Hemocyte Ocean Acidification Blue Mussel Elevated pCO2 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank Ulrike Panknin and Katja Trübenbach for tissue sampling, as well as UP for her help with RNA isolation and cDNA synthesis. This study is part of the German joint project “Biological Impact of Ocean Acidification (BIOACID)” (3.1.3) and funded by the Federal Ministry of Education and Research (BMBF, FKZ 03F0608B). It is a contribution to the PACES research program (work package 1.6) of the Alfred Wegener Institute funded by the Helmholtz Association. The Excellence Cluster ‘Future Ocean’ awarded grants to F.M., E.P., M.A.G. and P.R.

Supplementary material

227_2012_1930_MOESM1_ESM.pdf (299 kb)
Fig. 1 supplement Correlation network of genes in a) inner mantle tissue and b) outer mantle tissue based on the R-script after removing pCO2 dependent correlations. Line width of vertices corresponds to correlation. Genes were set as correlated when Spearman’s |ρ| ≥ 0.5. (PDF 299 kb)
227_2012_1930_MOESM2_ESM.pdf (1.1 mb)
Fig. 2 supplement Comparison of Copper-binding site CuA from several tyrosinases and one hemocyanin. Essential histidines, responsible for copper-binding are denoted with arrows. MeTYRs: Mytilus edulis putative tyrosinases from our transcriptome, LgTYR1: Lottia gigantea tyrosinase (ID: 166196 on JGI), PmTYR: Pinctada maxima tyrosinase (GH280185), PfOT47: P. fucata tyrosinase (DQ112679), PfTYR2: P. fucata tyrosinase (AB254133), PfTYR1: P. fucata tyrosinase (AB254132), CfTYR: Clamys farreri tyrosinase (ACF25906.1), LgTYR2: L. gigantea tyrosinase (ID: 160808 on JGI), IaTYR1: Illex argentinus tyrosinase (AB107880.1), IaTYR2: I. argentinus tyrosinase (AB107881.1), SoTYR: Sepia officinalis tyrosinase (AJ297474.1), HtHem: Haliotis tuberculata hemocyanin (CAC82192.1), GgTYR: Gallus gallus tyrosinase (AAB36375.1), MmTYR: Mus musculus tyrosinase (P11344.3), HsTYR: Homo sapiens (P14679.3). (PDF 1116 kb)
227_2012_1930_MOESM3_ESM.pdf (418 kb)
Fig. 3 supplement Phylogenetic tree of protein sequences including CuA sites of several tyrosinases and one hemocyanin. The length of the used sequences varied between 77 and 111 amino acids. The tree was constructed with the neighbor-joining method (Saitou and Nei 1987). Distances between the roots were un-corrected. For abbreviations see Fig. 2 supplement. (PDF 418 kb)


  1. Addadi L, Joester D, Nudelman F, Weiner S (2006) Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chem Eur J 12:980–987CrossRefGoogle Scholar
  2. Addadi L, Politi Y, Nudelman F, Weiner S (2008) Biomineralization design strategies and mechanisms of mineral formation: operating at the edge of instability. In: Novoa JJ, Braga D, Addadi L (eds) Engineering of crystalline materials properties state-of-the-art in modeling, design and applications. NATO Science for peace and security series B: physics and biophysics, Springer, Berlin, pp 1–15Google Scholar
  3. Almeida MJ, Machado J, Coelho MAV, Soares-da-Silva P, Coimbra J (1998) L-3,4-Dihydroxyphenylalanine (L-DOPA) secreted by oyster (Crassostrea gigas) mantle cells: function aspects. Comp Biochem Physiol B 120:709–713CrossRefGoogle Scholar
  4. Andersen SO (2010) Insect cuticular slerotization: a review. Insect Biochem Molec 40:166–178CrossRefGoogle Scholar
  5. Beniash E, Addadi L, Weiner S (1999) Cellular control over spicule formation in sea urchin embryos: a structural approach. J Struct Biol 125:50–62CrossRefGoogle Scholar
  6. Beniash E, Ivanina A, Lieb NS, Kurochkin I, Sokolova IM (2010) Elevated level of carbon dioxide affects metabolism and shell formation in oysters Crassostrea virginica. Mar Ecol Prog Ser 419:95–108CrossRefGoogle Scholar
  7. Bubel A (1973) An electron-microscope study of periostracum formation in some marine bivalves. II. The cells lining the periostracal groove. Mar Biol 20:222–234Google Scholar
  8. Chapman RW, Mancia A, Beal M, Veloso A, Rathburn C, Blair A, Holland AF, Warr GW, Didinato G, Sokolova IM, Wirth EF, Duffy E, Sanger D (2011) The transcriptomic response of the eastern oyster, Crassostrea virginica, to environmental conditions. Mol Ecol doi. doi: 10.1111/j.1365-294X.2011.05018.x Google Scholar
  9. Charlet M, Chernysh S, Philippe H, Hetru C, Hoffmann JA, Bulet P (1996) Innate immunity—isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc, Mytilus edulis. J Biol Chem 271(36):21808–21813CrossRefGoogle Scholar
  10. Clark GR II (1976) Shell growth in the marine environment: approaches to the problem of marginal calcification. Amer Zool 16:617–626Google Scholar
  11. Cox AG, Winterbourn CC, Hampton MB (2010) Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochem J 245:313–325CrossRefGoogle Scholar
  12. de la Fuente A, Bing N, Hoeschele I, Mendes P (2004) Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics 20(18):3565–3574CrossRefGoogle Scholar
  13. Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Annu Rev Mar Sci 1:169–192CrossRefGoogle Scholar
  14. Ehrlich H (2010) Chitin and collagen as universal and alternative templates in biomineralization. Int Geol Rev 52(7–8):661–699CrossRefGoogle Scholar
  15. Ellington WR (1993) Studies of intracellular pH regulation in cardiac myocytes from the marine bivalve mollusk, Mercenaria campechiensis. Biol Bull 184:209–215CrossRefGoogle Scholar
  16. Endo H, Persson P, Watanabe T (2000) Molecular cloning of the Crustacean DD4 cDNA encoding a Ca2+ - binding protein. Biochem Biophys Res Commun 276:286–291CrossRefGoogle Scholar
  17. Falini G, Albeck S, Weiner S, Addadi L (1996) Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 271:67–69CrossRefGoogle Scholar
  18. Falini G, Weiner S, Addadi L (2003) Chitin-silk fibroin interactions: relevance to calcium carbonate formation in invertebrates. Calcif Tissue Int 72:548–554CrossRefGoogle Scholar
  19. Feely RA, Alin SR, Newton J, Sabine CL, Warner M, Devol A, Krembs C, Maloy C (2010) The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuar Coast Shelf S 88:442–449CrossRefGoogle Scholar
  20. Hand SC, Hardewig I (1996) Downregulation of cellular metabolism during environmental stress: mechanisms and implications. Annu Rev Physiol 58:539–563CrossRefGoogle Scholar
  21. Harper EM (1997) The molluscan periostracum: an important constraint in bivalve evolution. Palaeontology 40(1):71–97Google Scholar
  22. Hattan SJ, Laue TM, Chasteen ND (2001) Purification and characterization of a novel calcium-binding protein from the extrapallial fluid of the mollusc, Mytilus edulis. J Biol Chem 276(6):4461–4468CrossRefGoogle Scholar
  23. Heinemann A, Fietzke J, Melzner F, Böhm F, Thomsen J, Garbe-Schönberg D, Eisenhauer A (2011) Conditions of Mytilus edulis extracellular body fluids and shell composition in a pH-treatment experiment: acid-base status, trace elements and δ11B. Geochem Geophys Geosyst. doi: 10.1029/2011GC003790
  24. Itoi S, Kinoshita S, Kikuchi K, Watabe S (2003) Changes of carp FOF1-ATPase in association with temperature acclimation. Am J Physiol Integr Comp Physiol 248:R153–R163Google Scholar
  25. Jacob DE, Wirth R, Soldati AL, Wehrmeister U, Schreiber A (2011) Amorphous calcium carbonate in the shells of adult Unionoida. J Struct Biol 173:241–249CrossRefGoogle Scholar
  26. Jankowsky E (2011) RNA helicases at work: binding and rearranging. Trend Biochem Sci 36(1):19–29CrossRefGoogle Scholar
  27. Kikuchi G, Motokawa Y, Yoshida T, Hiraga K (2008) Glycine cleavage system: reaction mechanism, physiological significance, and hyperglycinemia. Proc Jpn Acad Ser B 84:246–263CrossRefGoogle Scholar
  28. Kramer KJ, Muthukrishnan S (2005) Chitin metabolism in insects. In: Gilbert LI, Iatrou K, Gill S (eds) Comprehensive molecular insect science. Vol. 4, biochemistry and molecular biology, chapter 3. Elsevier Press, Oxford, pp 111–144CrossRefGoogle Scholar
  29. Lannig G, Eilers S, Pörtner HO, Sokolova IM, Bock C (2010) Impact of ocean acidification on energy metabolism of oyster, Crassostrea gigas – changes in metabolic pathways and thermal response. Mar Drugs 8:2318–2339CrossRefGoogle Scholar
  30. Levi-Kalisman Y, Falini G, Addadi L, Weiner S (2001) Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using cryo-TEM. J Struct Biol 135:8–17CrossRefGoogle Scholar
  31. Li S, Xie L, Zhang C, Zhang Y, Gu M, Zhang R (2004) Cloning and expression of a pivotal calcium metabolism regulator: calmodulin involved in shell formation from pearl oyster (Pinctada fucata). Comp Biochem Physiol B 138:235–243CrossRefGoogle Scholar
  32. Lischka S, Büdenbender J, Boxhammer T, Riebesell U (2011) Impact of ocean acidifaction and elevated temperatures on early juveniles of the polar shelled pteropod Limacina helicina: mortality, shell degradation, and shell growth. Biogeosciences 8:919–932CrossRefGoogle Scholar
  33. Machado J, Coimbra J, Castilho F, Sã C (1990) Effects of diflubenzuron on shell formation of the freshwater clam, Anodonta cygnea. Arch Environ Contam Toxicol 19:35–39CrossRefGoogle Scholar
  34. Marie B, Zanella-Cléon I, Corneillat M, Becchi M, Alcaraz G, Plasseraud L, Luquet G, Marin F (2011a) Nautilin-63, a novel acidic glycoprotein from the shell nacre of Nautilus macromphalus. FEBS J 278:2117–2130CrossRefGoogle Scholar
  35. Marie B, Le Roy N, Zanella-Cléon I, Becchi M, Marin F (2011b) Molecular evolution of mollusc shell proteins: insights from proteomic analysis of the edible mussel Mytilus. J Mol Evol doi:  10.1007/s00239-011-9451-6
  36. Marin F, Luquet G, Marie B, Medakovic D (2008) Molluscan shell proteins: primary structure, origin and evolution. Curr Top Dev Biol 80:209–276CrossRefGoogle Scholar
  37. Masui DC, Furriel RPM, McNamara JC, Mantelatto FLM, Leone FA (2002) Modulation by ammonium ions of gill microsomal (Na+, K+)-ATPase in the swimming crab Callinectes danae: a possible mechanism for regulation of ammonia excretion. Comp Biochem Physiol C 132:471–482Google Scholar
  38. Masui DC, Mantelatto FLM, McNamara JC, Furriel RPM, Leone FA (2009) Na+, K+-ATPase activity in gill microsomes from the blue crab, Callinectes danae, acclimated to low salinity: novel perspectives on ammonia excretion. Comp Biochem Physiol A 153:141–148CrossRefGoogle Scholar
  39. Mayzaud P, Conover RJ (1988) O:N atomic ratio as a tool to describe zooplankton metabolism. Mar Ecol Prog Ser 45:289–302CrossRefGoogle Scholar
  40. Melzner F, Stange P, Trübenbach K, Thomsen J, Casties I, Panknin U, Gorb SN, Gutowska MA (2011) Food supply and seawater pCO2 impact calcification and internal shell dissolution in the blue mussel Mytilus edulis. PLoS ONE 6(9):e24223. doi: 10.1371/journal.pone.0024223 CrossRefGoogle Scholar
  41. Merzendorfer H, Zimoch L (2003) Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J Exp Biol 206:4393–4412CrossRefGoogle Scholar
  42. Michaelidis B, Ouzounis C, Paleras A, Pörtner HO (2005) Effects of long-term moderate hypercapnia on acid-base balance and growth rate in marine mussels Mytilus galloprovincialis. Mar Ecol Prog Ser 293:109–118CrossRefGoogle Scholar
  43. Michaelidis B, Spring A, Pörtner HO (2007) Effects of long-term acclimation to environmental hypercapnia on extracellular acid-base status and metabolic capacity in Mediterranean fish Sparus aurata. Mar Biol 150:1417–1429CrossRefGoogle Scholar
  44. Mingliang Z, Jianguang F, Jihong Z, Bin L, Shengmin R, Yuze M, Yaping G (2011) Effect of marine acidification on calcification and respiration of Chlamys farreri. J Shellfish Res 30(2):267–271CrossRefGoogle Scholar
  45. Misogianes MJ, Chasteen ND (1979) A chemical and spectral characterization of the extrapallial fluid of Mytilus edulis. Anal Biochem 100:324–334CrossRefGoogle Scholar
  46. Mitta G, Vandenbulcke F, Hubert F, Salzet M, Roch P (2000) Involvement of mytilins in mussel antimicrobial defense. J Biol Chem 275(17):12954–12962CrossRefGoogle Scholar
  47. Nagai K, Yano M, Morimoto K, Miyamoto H (2007) Tyrosinase localization in mollusc shells. Comp Biochem Physiol B 146:207–214CrossRefGoogle Scholar
  48. Olivares C, Solano F (2009) New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins. Pigment Cell Melanoma Res 22(6):750–760CrossRefGoogle Scholar
  49. Palmer AR (1983) Relative cost of producing skeletal organic matrix versus calcification: evidence from marine gastropods. Mar Biol 75:287–292CrossRefGoogle Scholar
  50. Palmer AR (1992) Calcification in marine molluscs: How costly is it? Proc Natl Acad Sci USA 89:1379–1382CrossRefGoogle Scholar
  51. Philipp EER, Kraemer L, Melzner F, Poustka AJ, Thieme S, et al. (2012) Massively parallel RNA sequencing identifies a complex immune gene repertoire in the lophotrochozoan Mytilus edulis. PLoS ONE 7(3):e33091. doi: 10.1371/journal.pone.0033091
  52. Politi Y, Arad T, Klein E, Weiner S, Addadi L (2004) Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science 306:1161–1164CrossRefGoogle Scholar
  53. Pörtner HO, Bock C, Reipschläger A (2000) Modulation of the cost of pHi regulation during metabolic depression: a 31P-NMR study in invertebrate (Sipunculus nudus) isolated muscle. J Exp Biol 203:2128–2417Google Scholar
  54. Pörtner HO, Langenbuch M, Reipschläger A (2004) Biological impact of elevated ocean CO2 concentrations: lessons from animal physiology and earth history. J Oceanogr 60:705–718CrossRefGoogle Scholar
  55. Ries JB, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37(12):1131–1134CrossRefGoogle Scholar
  56. Riis B, Rattan SI, Clark BF, Merrick WC (1990) Eukaryotic protein elongation factors. Trends Biochem Sci 11:420–424CrossRefGoogle Scholar
  57. Rodolfo-Metalpa R, Houlbrèque F, Tambutté É, Biosson F, Baggini C, Patti FP, Jeffree R, Fine M, Foggo A, Gattuso J-P, Hall-Spencer JM (2011) Coral and mollusc resistance to ocean acidification adversely affected by warming. Nature Clim Change 1:308–312CrossRefGoogle Scholar
  58. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425Google Scholar
  59. Schönitzer V, Weiss IM (2007) The structure of mollusc larval shells formed in the presence of the chitin synthase inhibitor Nikkomycin Z. BMC Struct Biol 7:71. doi: 10.1186/1472-6807-7-71 CrossRefGoogle Scholar
  60. Soares-da-Silva IM, Almeida MJ, Serrão PM, Coelho MA, Machado J (1998) L-3,4-dihydroxyphenylalanine (L-DOPA) in Anodonta cygnea: variation with acidosis. Comp Biochem Physiol A 120:463–468CrossRefGoogle Scholar
  61. Suzuki M, Sakuda S, Nagasawa H (2007) Identification of chitin in the prismatic layer of the shell and a chitin synthase gene from the Japanese pearl oyster, Pinctada fucata. Biosci Biotechnol Biochem 71(7):1735–1744CrossRefGoogle Scholar
  62. Suzuki M, Saruwatari K, Kogure T, Yamamoto Y, Nishimura T, Kato T, Nagasawa H (2009) An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science 325:1388–1390CrossRefGoogle Scholar
  63. Taylor JD, Kennedy WJ (1969) The influence of the periostracum on the shell structure of bivalve molluscs. Calc Tiss Res 3:274–283CrossRefGoogle Scholar
  64. R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. URL
  65. Thomsen J, Melzner F (2010) Moderate seawater acidification does not elicit long-term metabolic depression in the blue mussel Mytilus edulis. Mar Biol 157(12):2667–2676CrossRefGoogle Scholar
  66. Thomsen J, Gutowska MA, Saphörster J, Heinemann A, Trübenbach K, Fietzke J, Hiebenthal C, Eisenhauer A, Körtzinger A, Wahl M, Melzner F (2010) Calcifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification. Biogeosciences 7:3879–3891CrossRefGoogle Scholar
  67. Todgham AE, Hofmann GE (2009) Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification. J Exp Biol 212:2579–2594CrossRefGoogle Scholar
  68. Tomanek L, Zuzow MJ, Ivanina AV, Beniash E, Sokolova IM (2011) Proteomic response to elevated P CO2 level in eastern oysters, Crassostrea virginica: evidence for oxidative stress. J Exp Biol 214:1836–1844CrossRefGoogle Scholar
  69. Tunnicliffe V, Davies KTA, Butterfield DA, Embley RW, Rose JM, Chadwick WW Jr (2009) Survival of mussels in extremely acidic waters on a submarine volcano. Nat Geosci 2(5):344–348CrossRefGoogle Scholar
  70. Uozumi S, Suzuki S (1979) “Organic membrane-shell” and initial calcification in shell regeneration. J Fac Sci Hokkaido Univ Ser IV 19(1–2):37–74Google Scholar
  71. Waite JH (1983) Quinone-tanned scleroproteins. In: Hochachka PW (ed) The mollusca, Metabolic biochemistry and molecular biomechanics, vol 1. Academic Press, New York, pp 467–504Google Scholar
  72. Waite JH, Andersen SO (1978) 3,4-Dihydroxyphenylalanine in an insoluble shell protein of Mytilus edulis. Biochim Biophys Acta 541:107–114CrossRefGoogle Scholar
  73. Waite JH, Wilbur KM (1976) Phenoloxidase in the periostracum of the marine bivalve Modiolus demissus dillwyn. J Exp Zool 195:359–368CrossRefGoogle Scholar
  74. Waite JH, Saleuddin ASM, Andersen SO (1979) Periostracin—a soluble precursor of sclerotized periostracum in Mytilus edulis L. J Comp Physiol 130:301–307Google Scholar
  75. Waldbusser GG, Voight EP, Bergschneider H, Green MA, Newell RIE (2011) Biocalcification in the Eastern Oyster (Crassostrea virginica) in relation to long-term trends in Chesapeake Bay pH. Estuar Coast 34:221–231CrossRefGoogle Scholar
  76. Wang L, Liu Y, Wang W-N, Mai W-J, Xin Y, Zhou J, He W-Y, Wang A-L, Sun R-Y (2011) Molecular characterization and expression analysis of elongation factors 1A and 2 from the Pacific white shrimp Litopenaeus vannamei. Mol Biol Rep 38:2167–2178CrossRefGoogle Scholar
  77. Weihrauch D, Morris S, Towle DW (2004) Ammonia excretion in aquatic and terrestrial crabs. J Exp Biol 207:4491–4504CrossRefGoogle Scholar
  78. Weiner S, Addadi L (2011) Crystallization pathways in biomineralization. Annu Rev Mater Res 41:21–40CrossRefGoogle Scholar
  79. Weiss IM (2010) Jewels in the pearl. ChemBioChem 11:297–300CrossRefGoogle Scholar
  80. Weiss IM, Schönitzer V (2006) The distribution of chitin in larval shells of the bivalve mollusk Mytilus galloprovincialis. J Struct Biol 153:264–277CrossRefGoogle Scholar
  81. Weiss IM, Tuross N, Addadi L, Weiner S (2002) Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. J Exp Zool 293:478–491CrossRefGoogle Scholar
  82. Yin Y, Huang J, Paine ML, Reinhold VN, Chasteen ND (2005) Structural characterization of the major extrapallial fluid protein of the mollusc Mytilus edulis: implications for function. Biochem 44:10720–10731CrossRefGoogle Scholar
  83. Yotsumoto N, Takeoka M, Yokoyama M (2010) Tail-suspended mice lacking calponin H1 experience decreased bone loss. Tohoku J Exp Med 221:221–227CrossRefGoogle Scholar
  84. Zaba BN (1981) Glycogenolytic pathways in the mantle tissue of Mytilus edulis L. Mar Biol Lett 2:67–74Google Scholar
  85. Zange J, Pörtner HO, Jans AWH, Grieshaber MK (1990) The intracellular pH of a molluscan smooth muscle during a contraction-catch-relaxation cycle estimated by the distribution of [14C]DMO and by 31P-NMR spectroscopy. J Exp Biol 150:81–93Google Scholar
  86. Zanker A (1984) Detection of outliers by means of Nalimov’s test. Chem Eng 91(16):74Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Anne K. Hüning
    • 1
    Email author
  • Frank Melzner
    • 2
  • Jörn Thomsen
    • 2
  • Magdalena A. Gutowska
    • 3
  • Lars Krämer
    • 4
  • Stephan Frickenhaus
    • 1
  • Philip Rosenstiel
    • 4
  • Hans-Otto Pörtner
    • 1
  • Eva E. R. Philipp
    • 4
  • Magnus Lucassen
    • 1
  1. 1.Alfred Wegener InstituteBremerhavenGermany
  2. 2.Marine Ecology, Helmholtz Centre for Ocean Research Kiel (GEOMAR)KielGermany
  3. 3.Marine Biogeochemistry, Helmholtz Centre for Ocean Research Kiel (GEOMAR)KielGermany
  4. 4.Institute of Clinical Molecular BiologyKiel UniversityKielGermany

Personalised recommendations