Marine Biology

, Volume 159, Issue 7, pp 1485–1496 | Cite as

Characterization of the zooxanthellate and azooxanthellate morphotypes of the Mediterranean gorgonian Eunicella singularis

  • Andrea GoriEmail author
  • Lorenzo Bramanti
  • Pablo López-González
  • Jana N. Thoma
  • Josep-Maria Gili
  • Jordi Grinyó
  • Vanessa Uceira
  • Sergio Rossi
Original Paper


The gorgonian Eunicella singularis (Esper, 1794) is abundant on rocky bottoms at Cap de Creus (42°18′49″ N; 003°19′23″ E) in the western Mediterranean, and this study compared zooxanthellate colonies from relatively shallow depths with azooxanthellate colonies living at depths to 60 m. The goal was to determine the taxonomic status of a previously described subspecies, E. singularis aphyta. Sampling at 10-m intervals from 20 to 60 m using scuba or a remotely operated vehicle (ROV) in 2004 and 2010 allowed examination of colony shape, sclerite variability, genetic variability, and the presence/absence of zooxanthellae. Two morphotypes were identified: a shallow morphotype with candelabra-like colonies at 20–30 m has zooxanthellae, while a deep morphotype with more ramified colonies at 40–60 m lacks symbionts. Sclerite differences among colonies were also identified along the depth gradient. The mitochondrial marker msh1 did not discriminate between the two morphotypes and indeed did not discriminate among several Mediterranean species of Eunicella. Other genetic markers will be needed to firmly establish the taxonomic status of the two depth-related morphotypes.


Primary Branch Mean Absolute Deviation Remotely Operate Vehicle Bifurcation Ratio Symbiotic Alga 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful for the invaluable assistance of JM Fortuño with the scanning electron miscroscope, of T Garcia, A Olariaga, X Leal, S Ambroso, and J Movilla with field work, of J Sants and A Arias with the CTDs, of the SES Tarragona for their assistance and availability, and of S France (UL Lafayette) for providing laboratory facilities and expertise for sequencing of mitochondrial genes, funded by NOAA’s Office of Ocean Exploration (#NA08OAR4600756) and the NSF project “Assembling the Cnidarian Tree of Life” (grants EF-0531570 to CS McFadden and EF-0531779 to P Cartwright). A Gori was funded by an I3P contract of the Consejo Superior de Investigaciones Cientificas (Ref. I3P-BPD2005), L Bramanti was funded by Marie Curie IEF (Corgard, Project no. 221072), and S Rossi was funded from a Ramón y Cajal Contract (RyC-2007-01327). This work is part of the 2003–2004 INTERREG project between Catalonia-Languedoc Rouissillon “Pirineus Mediterrànis: La muntanya que uneix” of the CSIC and CNRS, and the 2009–2013 European project LIFE + INDEMARES “Inventario y designación de la red natura 2000 en áreas marinas del estado español” (LIFE07/NAT/E/000732) of the European Union.

Supplementary material

227_2012_1928_MOESM1_ESM.jpg (296 kb)
Online Resource 1 Map of sampling locations in western Mediterranean Sea (JPG 295 kb)
227_2012_1928_MOESM2_ESM.jpg (2.4 mb)
Online Resource 2 Five degrees of roughness in balloon club heads of Eunicella spp.; completely smooth (1), predominantly smooth but with some peaks (2), almost as smooth as rough (3), completely rough with no pronounced peaks (4), completely rough with pronounced peaks (5) (JPG 2424 kb)
227_2012_1928_MOESM3_ESM.doc (25 kb)
Supplementary material 3 (DOC 25 kb)
227_2012_1928_MOESM4_ESM.jpg (10.2 mb)
Online Resource 4 Colonies of Eunicella singularis from each depth sampled, Eunicella cavolinii (EC), and Eunicella verrucosa (EV) (JPG 10.1 mb)
227_2012_1928_MOESM5_ESM.jpg (1.1 mb)
Online Resource 5 Balloon clubs from two colonies of Eunicella singularis from 20 m depth (JPG 1.13 mb)
227_2012_1928_MOESM6_ESM.jpg (938 kb)
Online Resource 6 Balloon clubs from two colonies of Eunicella singularis from 30 m depth (JPG 937 kb)
227_2012_1928_MOESM7_ESM.jpg (878 kb)
Online Resource 7 Balloon clubs from two colonies of Eunicella singularis from 40 m depth (JPG 878 kb)
227_2012_1928_MOESM8_ESM.jpg (774 kb)
Online Resource 8 Balloon clubs from two colonies of Eunicella singularis from 50 m depth (JPG 773 kb)
227_2012_1928_MOESM9_ESM.jpg (509 kb)
Online Resource 9 Balloon clubs from two colonies of Eunicella singularis from 60 m depth (JPG 509 kb)
227_2012_1928_MOESM10_ESM.jpg (789 kb)
Online Resource 10 Balloon clubs from two colonies of Eunicella cavolinii (JPG 789 kb)
227_2012_1928_MOESM11_ESM.jpg (621 kb)
Online Resource 11 Balloon clubs from two colonies of Eunicella verrucosa (JPG 620 kb)
227_2012_1928_MOESM12_ESM.pdf (51 kb)
Supplementary material 12 (PDF 50 kb)
227_2012_1928_MOESM13_ESM.jpg (1.9 mb)
Online Resource 13 Histological preparations from colonies of Eunicella singularis fromeach sampled depth; arrows indicate zooxanthellae (JPG 1.87 mb)
227_2012_1928_MOESM14_ESM.jpg (2.8 mb)
Online Resource 14 Water column characterization at Cap de Creus during study period; grey line represents photosynthetically active radiation (PAR), grey dashed line represents water density, black line represents water temperature, and black dashed line represents salinity (JPG 2.81 mb)


  1. Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophoton Int 11:36–42Google Scholar
  2. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46Google Scholar
  3. Anderson MJ (2005) PERMANOVA: a FORTRAN computer program for permutational multivariate analysis of variance. Department of Statistics, University of Auckland, Auckland.
  4. Anderson MJ, ter Braak CJF (2003) Permutation tests for multi-factorial analysis of variance. J Stat Comp Sim 73:85–113CrossRefGoogle Scholar
  5. Ballesteros E (2006) Mediterranean coralligenous assemblages: a synthesis of present knowledge. Oceanogr Mar Biol Annu Rev 44:123–195Google Scholar
  6. Bo M, Bavestrello G, Canese S, Giusti M, Salvati E, Angiolillo M, Greco S (2009) Characteristics of a black coral meadow in the twilight zone of the central Mediterranean Sea. Mar Ecol Prog Ser 397:53–61CrossRefGoogle Scholar
  7. Bo M, Bertolino M, Borghini M, Castellano M, Covazzi Harriague A, Di Camillo CG, Gasparini G, Misic C, Povero P, Pusceddu A, Schroeder K, Bavestrello G (2011) Characteristics of the mesophotic megabenthic assemblages of the Vercelli seamount (North Tyrrhenian Sea). PLoS ONE 6:e16357CrossRefGoogle Scholar
  8. Bongaerts P, Ridgway T, Sampayo EM, Hoegh-Guldberg O (2010) Assessing the ‘deep reef refugia’ hypothesis: focus on Caribbean reefs. Coral Reefs 29:309–327CrossRefGoogle Scholar
  9. Bradshaw AD (1965) Evolutionary significance of phenotypic plasticity in plants. Adv Genet 13:115–155CrossRefGoogle Scholar
  10. Brazeau DA, Lasker HR (1988) Inter- and intraspecific variation in gorgonian colony morphology: quantifying branching patterns in arborescent animals. Coral Reefs 7:139–143CrossRefGoogle Scholar
  11. Calderón I, Garrabou J, Aurelle D (2006) Evaluation of the utility of COI and ITS markers as tools for population genetic studies of temperate gorgonians. J Exp Mar Biol Ecol 336:184–197CrossRefGoogle Scholar
  12. Carpine C, Grasshoff M (1975) Les gorgonaires de la Méditerranée. Bull Inst Océanogr Monaco 71:1–140Google Scholar
  13. Cerrano C, Danovaro R, Gambi C, Pusceddu A, Riva A, Schiaparelli S (2010) Gold coral (Savalia savaglia) and gorgonian forests enhance benthic biodiversity and ecosystem functioning in the mesophotic zone. Biodivers Conserv 19:153–167CrossRefGoogle Scholar
  14. Einbinder S, Mass T, Brokovich E, Dubinsky Z, Erez J, Tchernov D (2009) Changes in morphology and diet of the coral Stylophora pistillata along a depth gradient. Mar Ecol Prog Ser 381:167–174CrossRefGoogle Scholar
  15. Esper EJG (1794) Die pflanzenthiere in abbildungen nach der natur vol 2. Kaspischen Buchhandlung, NürnbergGoogle Scholar
  16. France SC (2007) Genetic analysis of bamboo corals (Cnidaria: Octocorallia: Isididae). Does lack of colony branching distinguish Lepidisis from Keratoisis? Bull Mar Sci 81:323–333Google Scholar
  17. France SC, Hoover LL (2001) Analysis of variation in mitochondrial DNA sequences (ND3, ND4L, MSH) among Octocorallia (= Alcyonaria) (Cnidaria: Anthozoa). Bull Biol Soc Wash 10:110–118Google Scholar
  18. Gili JM, Ros J (1985) Study and cartography of the benthic communities of Medes Islands (NE Spain). PSZNI Mar Ecol 6:219–238CrossRefGoogle Scholar
  19. Gori A, Linares C, Rossi S, Coma R, Gili JM (2007) Spatial variability in reproductive cycle of the gorgonians Paramuricea clavata and Eunicella singularis (Anthozoa, Octocorallia) in the Western Mediterranean Sea. Mar Biol 151:1571–1584CrossRefGoogle Scholar
  20. Gori A, Rossi S, Berganzo E, Pretus JL, Dale MRT, Gili JM (2011a) Spatial distribution patterns of the gorgonians Eunicella singularis, Paramuricea clavata and Leptogorgia sarmentosa (Cape of Creus, Northwestern Mediterranean Sea). Mar Biol 158:143–158CrossRefGoogle Scholar
  21. Gori A, Rossi S, Linares C, Berganzo E, Orejas C, Dale MRT, Gili JM (2011b) Size and spatial structure in deep versus shallow populations of the Mediterranean gorgonian Eunicella singularis (Cap de Creus, northwestern Mediterranean Sea). Mar Biol 158:1721–1732CrossRefGoogle Scholar
  22. Grasshoff M (1992) Die Flachwasser-Gorgonarien von Europa und Westafrika (Cnidaria. Anthozoa). Courier Forschunginsiiiui Senckenberg 149:1–135Google Scholar
  23. Gutiérrez-Rodríguez C, Hannes AR, Lasker HR (2004) Microsatellite variation reveals high levels of genetic variability and population structure in the gorgonian coral Pseudopterogorgia elisabethae across the Bahamas. Mol Ecol 13:2211–2221CrossRefGoogle Scholar
  24. Gutiérrez-Rodríguez C, Hannes AR, Lasker HR (2005) Microsatellite variation reveals high levels of genetic variability and population structure in the gorgonian coral Pseudopterogorgia elisabethae across the Bahamas. Corrigendum. Mol Ecol 14:4205–4206CrossRefGoogle Scholar
  25. Hiscock K (1983) Water movement. In: Earll E, Erwin DG (eds) Sublittoral ecology. The ecology of the shallow sublittoral benthos. Oxford University Press, Oxford, pp 58–96Google Scholar
  26. Jeyasuria P, Lewis JC (1987) Mechanical properties of the axial skeleton in gorgonians. Coral Reefs 5:213–219CrossRefGoogle Scholar
  27. Le Goff-Vitry MC, Pybus OG, Rogers AD (2004) Genetic structure of the deep-sea coral Lophelia pertusa in the northeast Atlantic revealed by microsatellites and internal transcribed spacer sequences. Mol Ecol 13:537–549CrossRefGoogle Scholar
  28. Lepard A (2003) Analysis of variation in the mitochondrial encoded msh1 in the genus Leptogorgia (Cnidaria: Octocorallia) and implications for population and systematic studies. MS thesis, University of Charleston, CharlestonGoogle Scholar
  29. Lewis JC, Von Wallis E (1991) The function of surface sclerites in gorgonians (Coelenterata, Octocorallia). Biol Bull 181:275–288CrossRefGoogle Scholar
  30. Linares C, Coma R, Garrabou J, Díaz D, Zabala M (2008) Size distribution, density and disturbance in two Mediterranean gorgonians: Paramuricea clavata and Eunicella singularis. J Appl Ecol 45:688–699CrossRefGoogle Scholar
  31. Marfenin NN (1997) Adaptation capabilities of marine modular organisms. Hydrobiologia 355:153–158CrossRefGoogle Scholar
  32. McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–297CrossRefGoogle Scholar
  33. McFadden CS, van Ofwegen LP, Beckman EJ, Benayahu Y, Alderslade P (2009) Molecular systematics of the speciose Indo-Pacific soft coral genus, Sinularia (Anthozoa: Octocorallia). Invertebr Biol 128:303–323CrossRefGoogle Scholar
  34. McFadden CS, Benayahu Y, Pante E, Thoma JN, Nevarez PA, France SC (2011) Limitations of mitochondrial gene barcoding in Octocorallia. Mol Ecol 11:19–31CrossRefGoogle Scholar
  35. Molecular Ecology Resources Primer Development Consortium, Abdoullaye D, Acevedo I, Adebayo AA, Behrmann-Godel J, Benjamin RC, Bock DG, Born C, Brouat C, Caccone A et al (2010) Permanent genetic resources added to molecular ecology resources database 1 August 2009–30 September 2009. Mol Ecol Resourc 10:232–236Google Scholar
  36. Muko S, Kawasaki K, Sakai K, Takasu F, Shigesada N (2000) Morphological plasticity in the coral Porites sillimaniani and its adaptive significance. Bull Mar Sci 66:225–239Google Scholar
  37. Oksanen J, Kindt R, Legendre P, O’Hara RB (2005) Vegan: community ecology package. Version 1.7-81.
  38. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290CrossRefGoogle Scholar
  39. R Development Core Team (2007) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051- 07-0.
  40. Ribes M, Coma R, Rossi S, Micheli M (2007) Cycle of gonadal development in Eunicella singularis (Cnidaria: Octocorallia): trends in sexual reproduction in gorgonians. Invertebr Biol 126:307–317CrossRefGoogle Scholar
  41. Rodriguez-Lanetty M, Marquez LM, Losada F (2003) Changes in gorgonian morphology along a depth gradient at Isla Alcatraz, San Sebastian National Park, Venezuela. Bull Mar Sci 72:1019–1023Google Scholar
  42. Rossi L (1959) Le specie di Eunicella (Gorgonaria) del Golfo di Genova. Res Ligusticae 118:203–225Google Scholar
  43. Rossi S, Gili JM, Garrofé X (2011) Net negative growth detected in a population of Leptogorgia sarmentosa: quantifying the biomass loss in a benthic soft bottom-gravel gorgonian. Mar Biol. doi: 10.1007/s00227-011-1675-x
  44. Sánchez JA, Aguilar C, Dorado D, Manrique N (2007) Phenotypic plasticity and morphological integration in a marine modular invertebrate. BMC Evol Biol 7:122–130CrossRefGoogle Scholar
  45. Schols P, Smets E (2001) Carnoy: analysis software for LM, SEM and TEM images. Leuven: distributed by the authors.
  46. Sebens K (1987) The ecology of indeterminate growth in animals. Ann Rev Ecol Syst 18:371–407CrossRefGoogle Scholar
  47. Shaish L, Abelson A, Rinkevich B (2007) How plastic can phenotypic plasticity be? The branching coral Stylophora pistillata as a model system. PLoS ONE doi: 10.1371/journal.pone.0000644
  48. Sink KJ, Boshoff W, Samaai T, Timm PG, Kerwath SE (2006) Observations of the habitats and biodiversity of the submarine canyons at Sodwana Bay. S Afr J Sci 102:466–474Google Scholar
  49. Skoufas G (2006) Comparative biometry of Eunicella singularis (Gorgonian) sclerites at East Mediterranean Sea (North Aegean Sea, Greece). Mar Biol 149:1365–1370CrossRefGoogle Scholar
  50. Skoufas G, Poulicek M, Chintiroglou CC (2000) Growth variation of Eunicella singularis (Esper, 1794) (Gorgonacea, Anthozoa). Belg J Zool 130:121–124Google Scholar
  51. Smith LW, Barshis D, Birkeland C (2007) Phenotypic plasticity for skeletal growth, density and calcification of Porites lobata in response to habitat type. Coral Reefs 26:559–567CrossRefGoogle Scholar
  52. Strahler AN (1957) Quantitative analysis of watershed geomorphology. Trans Am Geophys Union 8:913–920Google Scholar
  53. Théodor J (1963) Contribution a l’étude des gorgones (III): Trois formes adaptatives d’Eunicella stricta en fonction de la turbulence et du courant. Vie Milieu 14:815–818Google Scholar
  54. Théodor J (1969) Contribution a l’étude des gorgones (VIII): Eunicella stricta aphyta sous-espèce nouvelle sans zooxanthelles proche d’une espèce normalement infestée par ces algues. Vie Milieu 20:635–638Google Scholar
  55. Thoma JN, Pante E, Brugler MR, France SC (2009) Deep-sea octocorals and antipatharians show no evidence of seamount-scale endemism in the NW Atlantic. Mar Ecol Prog Ser 397:25–35CrossRefGoogle Scholar
  56. Todd PA, Sidle RC, Lewin-Koh NJI (2004) An aquarium experiment for identifying the physical factors inducing morphological change in two massive scleractinian corals. J Exp Mar Biol Ecol 299:97–113CrossRefGoogle Scholar
  57. van der Ham JL, Brugler MR, France SC (2009) Exploring the utility of an indel-rich, mitochondrial intergenic region as a molecular barcode for bamboo corals (Octocorallia: Isididae). Mar Genomics 2:183–192CrossRefGoogle Scholar
  58. Velimirov B (1976) Variations in growth forms of Eunicella cavolinii Koch (Octocorallia) related to intensity of water movement. J Exp Mar Biol Ecol 21:109–117CrossRefGoogle Scholar
  59. Vermeij MJA, Sandin SA, Samhouri JF (2007) Local habitat distribution determines the relative frequency and interbreeding potential for two Caribbean coral morphospecies. Evol Ecol 21:27–47CrossRefGoogle Scholar
  60. Virgilio M, Airoldi L, Abbiati M (2006) Spatial and temporal variations of assemblages in a Mediterranean coralligenous reef and relationships with surface orientation. Coral Reefs 25:265–272CrossRefGoogle Scholar
  61. Weinbauer MG, Velimirov B (1995) Morphological variations in the Mediterranean sea fan Eunicella cavolini (Coelenterata: Gorgonacea) in relation to exposure, colony size and colony region. Bull Mar Sci 56:283–295Google Scholar
  62. Weinbauer MG, Velimirov B (1998) Comparative morphometry of fan-like colonies of three Mediterranean gorgonians (Cnidaria: Gorgonacea). Cah Biol Mar 39:41–49Google Scholar
  63. Weinberg S (1976) Revision of the common Octocorallia of the Mediterranean circalittoral. I. Gorgonacea. Beaufortia 24:63–104Google Scholar
  64. Weinberg S, Weinberg F (1979) The life cycle of a gorgonian: Eunicella singularis (Esper, 1794). Bijdr Dierkd 48:127–140Google Scholar
  65. West JM, Harvell CD, Walls AM (1993) Morphological plasticity in a gorgonian coral (Briareum asbestinum) over a depth cline. Mar Ecol Prog Ser 94:61–69CrossRefGoogle Scholar
  66. Whitaker D, Christman (2010) Clustsig: similarity profile analysis. R package version 1.0.

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Andrea Gori
    • 1
    Email author
  • Lorenzo Bramanti
    • 1
  • Pablo López-González
    • 2
  • Jana N. Thoma
    • 3
  • Josep-Maria Gili
    • 1
  • Jordi Grinyó
    • 1
  • Vanessa Uceira
    • 1
  • Sergio Rossi
    • 4
  1. 1.Institut de Ciències del Mar, Consejo Superior de Investigaciónes CientificasBarcelonaSpain
  2. 2.Facultad de BiologíaUniversidad de SevillaSevillaSpain
  3. 3.Department of BiologyUniversity of Louisiana at LafayetteLafayetteUSA
  4. 4.Institut de Ciència i Tecnologia Ambientals, Universitat Autònoma de BarcelonaCerdanyola del Vallès, BarcelonaSpain

Personalised recommendations