Marine Biology

, Volume 159, Issue 11, pp 2455–2478 | Cite as

Climate change effects on phytoplankton depend on cell size and food web structure

  • Toni Klauschies
  • Barbara Bauer
  • Nicole Aberle-Malzahn
  • Ulrich Sommer
  • Ursula Gaedke
Original Paper

Abstract

We investigated the effects of warming on a natural phytoplankton community from the Baltic Sea, based on six mesocosm experiments conducted 2005–2009. We focused on differences in the dynamics of three phytoplankton size groups which are grazed to a variable extent by different zooplankton groups. While small-sized algae were mostly grazer-controlled, light and nutrient availability largely determined the growth of medium- and large-sized algae. Thus, the latter groups dominated at increased light levels. Warming increased mesozooplankton grazing on medium-sized algae, reducing their biomass. The biomass of small-sized algae was not affected by temperature, probably due to an interplay between indirect effects spreading through the food web. Thus, under the higher temperature and lower light levels anticipated for the next decades in the southern Baltic Sea, a higher share of smaller phytoplankton is expected. We conclude that considering the size structure of the phytoplankton community strongly improves the reliability of projections of climate change effects.

References

  1. Aberle N, Lengfellner K, Sommer U (2007) Spring bloom succession, grazing impact and herbivore selectivity of ciliate communities in response to winter warming. Oecologia 150:668–681. doi:10.1007/s00442-006-0540-y CrossRefGoogle Scholar
  2. BACC Author Team (2008) Assessment of climate change for the Baltic Sea Basin. Springer-Verlag, BerlinGoogle Scholar
  3. Barber RT, Hiscock MR (2006) A rising tide lifts all phytoplankton: growth response of other phytoplankton taxa in diatom-dominated blooms. Global Biogeochem Cycles 20:GB4S03. doi:10.1029/2006GB002726
  4. Barton BT, Beckerman AP, Schmitz OJ (2009) Climate warming strengthens indirect interactions in an old-field food web. Ecology 90:2346–2351. doi:10.1890/08-2254.1 CrossRefGoogle Scholar
  5. Baumert HZ, Petzoldt T (2008) The role of temperature, cellular quota and nutrient concentrations for photosynthesis, growth and light-dark acclimation in phytoplankton. Limnologica 38:313–326. doi:10.1016/j.limno.2008.06.002 CrossRefGoogle Scholar
  6. Beveridge OS, Petchey OL, Humphries S (2010a) Direct and indirect effects of temperature on the population dynamics and ecosystem functioning of aquatic microbial ecosystems. J Animal Ecol 79:1324–1331. doi:10.1111/j.1365-2656.2010.01741.x CrossRefGoogle Scholar
  7. Beveridge OS, Humphries S, Petchey OL (2010b) The interacting effects of temperature and food chain length on trophic abundance and ecosystem function. J Animal Ecol 79:693–700. doi:10.1111/j.1365-2656.2010.01662.x CrossRefGoogle Scholar
  8. Boyce DG, Lewis MR, Worm B (2010) Global phytoplankton decline over past century. Nature 466:591–596. doi:10.1038/nature09268 CrossRefGoogle Scholar
  9. Bramm ME, Lassen MK, Liboriussen L, Richardson K, Ventura M, Jeppesen E (2009) The role of light for fish–zooplankton–phytoplankton interactions during winter in shallow lakes—a climate change perspective. Freshwater Biol 54:1093–1109. doi:10.1111/j.1365-2427.2008.02156.x CrossRefGoogle Scholar
  10. Brock TD (1981) Calculating solar radiation for ecological studies. Ecological modelling, 14rd edn, pp 1–19Google Scholar
  11. Calbet A (2008) The trophic roles of microzooplankton in marine systems. ICES J Mar Sci 65:325–331. doi:10.1093/icesjms/fsn013 CrossRefGoogle Scholar
  12. Calbet A, Saiz E (2005) The ciliate-copepod link in marine ecosystems. Aquat Microb Ecol 38:157–167. doi:10.3354/ame038157 CrossRefGoogle Scholar
  13. Daufresne M, Lengfellner K, Sommer U (2009) Global warming benefits the small in aquatic ecosystems. Proc Nat Acad Sci USA 106:12788–12793. doi:10.1073/pnas.0902080106 CrossRefGoogle Scholar
  14. Duffy JE, Stachowicz JJ (2006) Why biodiversity is important to oceanography: potential roles of genetic, species, and trophic diversity in pelagic ecosystem processes. Mar Ecol Prog Ser 311:179–189. doi:10.3354/meps311179 CrossRefGoogle Scholar
  15. Finkel ZV, Beardall J, Flynn KJ, Quigg A, Rees TAV, Raven JA (2010) Phytoplankton in a changing world: cell size and elemental stoichiometry. J Plankton Res 32:119–137. doi:10.1093/plankt/fbp098 CrossRefGoogle Scholar
  16. Gaedke U, Ruhenstroth-Bauer M, Wiegand I, Tirok K, Aberle N, Breithaupt P, Lengfellner K, Wohlers J, Sommer U (2010) Biotic interactions may overrule direct climate effects on spring phytoplankton dynamics. Glob Change Biol 16:1122–1136. doi:10.1111/j.1365-2486.2009.02009.x CrossRefGoogle Scholar
  17. Gargas E (1975) A manual for phytoplankton primary production studies in the Baltic. BMB Publishing, Horsholm, Danemark, Water Quality Institute 2Google Scholar
  18. Guinder VA, Popovich CA, Molinero JC, Perillo GME (2010) Long-term changes in phytoplankton phenology and community structure in the Bahίa Blanca Estuary, Argentina. Mar Biol 157:2703–2716. doi:10.1007/s00227-010-1530-5 CrossRefGoogle Scholar
  19. Hansen B, Bjørnsen PK, Hansen PJ (1994) The size ratio between planktonic predators and their prey. Limnol Oceanogr 39:395–403CrossRefGoogle Scholar
  20. Hansen PJ, Bjørnsen PK, Hansen BW (1997) Zooplankton grazing and growth: scaling within the 2–2,000-μm body size range. Limnol Oceanogr 42:687–704CrossRefGoogle Scholar
  21. Henriksen P (2009) Long-term changes in the phytoplankton in the Kattegat, the Belt Sea, the Sound and the western Baltic Sea. J Sea Res 61:114–123. doi:10.1016/j.seares.2008.10.003 CrossRefGoogle Scholar
  22. Hillebrand H, Dürselen CD, Kischtel K, Pollingher U (1999) Biovolume calculations for pelagic and benthic microalgae. J Phycol 35:403–424. doi:10.1046/j.1529-8817.1999.3520403.x CrossRefGoogle Scholar
  23. Hoekman D (2010) Turning up the heat: temperature influences the relative importance of top–down and bottom–up effects. Ecology 91:2819–2825. doi:10.1890/10-0260.1 CrossRefGoogle Scholar
  24. Horn H, Horn W (2008) Bottom–up or top–down—how is the autotrophic picoplankton mainly controlled? Results of long-term investigations from two drinking water reservoirs of different trophic state. Limnologica 38:302–312. doi:10.1016/j.limno.2008.05.007 CrossRefGoogle Scholar
  25. Ingrid G, Andersen T, Vadstein O (1996) Pelagic food webs and eutrophication of coastal waters: impact of grazers on algal communities. Mar Pollut Bull 33:22–35. doi:10.1016/S0025-326X(96)00134-8 CrossRefGoogle Scholar
  26. IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p 996Google Scholar
  27. Irigoien X, Flynn KJ, Harris RP (2005) Phytoplankton blooms: a ‘loophole’ in microzooplankton grazing impact? J Plankton Res 27:313–321. doi:10.1093/plankt/fbi011 CrossRefGoogle Scholar
  28. Isla JA, Lengfellner K, Sommer U (2008) Physiological response of the copepod Pseudocalanus sp. in the Baltic Sea at different thermal scenarios. Glob Change Biol 14:895–906. doi:10.1111/j.1365-2486.2008.01531.x CrossRefGoogle Scholar
  29. Jakobsen HH, Halvorsen E, Hansen BW, Visser AW (2005) Effects of prey motility and concentration on feeding in Acartia tonsa and Temora longicornis: the importance of feeding modes. J Plankton Res 27:775–785. doi:10.1093/plankt/fbi051 CrossRefGoogle Scholar
  30. Johansson M, Gorokhova E, Larsson U (2004) Annual variability in ciliate community structure, potential prey and predators in the open northern Baltic Sea proper. J Plankton Res 26:67–80. doi:10.1093/plankt/fbg115 CrossRefGoogle Scholar
  31. Juliano SA (2001) Nonlinear curve fitting: predation and functional response curves. In: Scheiner SM, Gurevitch J (eds) Design and analysis of ecological experiments. Oxford University Press, Oxford, pp 178–196Google Scholar
  32. Kleppel GS (1993) On the diets of calanoid copepods. Mar Ecol Prog Ser 99:183–195CrossRefGoogle Scholar
  33. Lehmann A, Getzlaff K, Harlass J (2011) Detailed assessment of climate variability in the Baltic Sea area for the period 1958–2009. Climate Research 46:185–196. doi:10.3354/cr00876 CrossRefGoogle Scholar
  34. Lewandowska A (2011) Effects of warming on the phytoplankton succession and trophic interactions. Dissertation, Kiel University, GermanyGoogle Scholar
  35. Lewandowska A, Sommer U (2010) Climate change and the spring bloom: a mesocosm study on the influence of light and temperature on phytoplankton and mesozooplankton. Mar Ecol Prog Ser 405:101–111. doi:10.3354/meps08520 CrossRefGoogle Scholar
  36. Litchman E, Pinto PT, Klausmeier CA, Thomas MK, Yoshiyama K (2010) Linking traits to species diversity and community structure in phytoplankton. Hydrobiologia 653:15–28. doi:10.1007/s10750-010-0341-5 CrossRefGoogle Scholar
  37. Löder MGJ, Kraberg AC, Aberle N, Peters S, Wiltshire KH (2011a) Dinoflagellates and ciliates at Helgoland Roads, North Sea. Helgoland Marine Research. doi. doi:10.1007/s10152-010-0242-z Google Scholar
  38. Löder MGJ, Meunier C, Wiltshire KH, Boersma M, Aberle N (2011b) The role of ciliates, heterotrophic dinoflagellates and copepods in structuring spring plankton communities at Helgoland Roads, North Sea. Mar Biol 158:1551–1580. doi:10.1007/s00227-011-1670-2 CrossRefGoogle Scholar
  39. Lundsgaard C, Olesen M, Reigstad M, Olli K (1999) Sources of settling material: aggregation and zooplankton mediated fluxes in the Gulf of Riga. J Mar Syst 23:197–210CrossRefGoogle Scholar
  40. McCauley E, Briand F (1979) Zooplankton grazing and phytoplankton species richness: field tests of the predation hypothesis. Limnol Oceanogr 24:243–252CrossRefGoogle Scholar
  41. Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr 45:569–579CrossRefGoogle Scholar
  42. Montagnes DJS (1996) Growth responses of planktonic ciliates in the genera Strobilidium and Strombidium. Marine Ecology-Progress Series 130:241–254CrossRefGoogle Scholar
  43. Neumann T (2010) Climate-change effects on the Baltic Sea ecosystem: a model study. J Mar Syst 81:213–224. doi:10.1016/j.jmarsys.2009.12.001 CrossRefGoogle Scholar
  44. O’Connor MI (2009) Warming strengthens an herbivore—plant interaction. Ecology 90:388–398. doi:10.1890/08-0034.1 CrossRefGoogle Scholar
  45. O’Connor MI, Piehler MF, Leech DM, Anton A, Bruno JF (2009) Warming and resource availability shift food web structure and metabolism. PLoS Biol 7:e1000178. doi:10.1371/journal.pbio.1000178 CrossRefGoogle Scholar
  46. Piontek J, Händel N, Langer G, Wohlers J, Riebesell U, Engel A (2009) Effects of rising temperature on the formation and microbial degradation of marine diatom aggregates. Aquat Microb Ecol 54:305–318. doi:10.3354/ame01273 CrossRefGoogle Scholar
  47. Ptacnik R, Sommer U, Hansen T, Martens V (2004) Effects of microzooplankton and mixotrophy in an experimental planktonic food web. Limnol Oceanogr 49:1435–1445CrossRefGoogle Scholar
  48. Putt M, Stoecker DK (1989) An experimentally determined carbon: volume ratio for marine “Oligotrichous” ciliates from estuarine and coastal waters. Limnol Oceanogr 34:1097–1103CrossRefGoogle Scholar
  49. Reynolds CS (2006) The ecology of phytoplankton. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  50. Richardson AJ (2008) In hot water: zooplankton and climate change. Journal of Marine Science 65:279–295. doi:10.1093/icesjms/fsn028 Google Scholar
  51. Richardson AJ, Schoeman DS (2004) Climate impact on plankton ecosystems in the Northeast Atlantic. Science 305:1609–1612. doi:10.1126/science.1100958 CrossRefGoogle Scholar
  52. Rose JM, Caron DA (2007) Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnol Oceanogr 52:886–895CrossRefGoogle Scholar
  53. Ryther JH, Sanders JG (1980) Experimental evidence of zooplankton control of the species composition and size distribution of marine phytoplankton. Mar Ecol Prog Ser 3:279–283. doi:10.3354/meps003279 CrossRefGoogle Scholar
  54. Saiz E, Calbet A (2011) Copepod feeding in the ocean: scaling patterns, composition of their diet and the bias of estimates due to microzooplankton grazing during incubations. Hydrobiologia 666:181–196. doi:10.1007/s10750-010-0421-6 CrossRefGoogle Scholar
  55. Sherr EB, Sherr BF (2007) Heterotrophic dinoflagellates: a significant component of microzooplankton biomass and major grazers of diatoms in the sea. Marine Ecology-Progress Series 352:187–197. doi:10.3354/meps07161 CrossRefGoogle Scholar
  56. Sherr EB, Sherr BF (2009) Capacity of herbivorous protists to control initiation and development of mass phytoplankton blooms. Aquat Microb Ecol 57:253–262. doi:10.3354/ame01358 CrossRefGoogle Scholar
  57. Sinistro R (2010) Top–down and bottom–up regulation of planktonic communities in a warm temperate wetland. J Plankton Res 32:209–220. doi:10.1093/plankt/fbp114 CrossRefGoogle Scholar
  58. Smith JRWO, Lancelot C (2004) Bottom–up versus top–down control in phytoplankton of the Southern Ocean. Antarct Sci 16:531–539. doi:10.1017/S0954102004002305 CrossRefGoogle Scholar
  59. Sommer U (2005) Biologische Meereskunde, 2nd edn. Springer, BerlinGoogle Scholar
  60. Sommer U, Lengfellner K (2008) Climate change and the timing, magnitude, and composition of the phytoplankton spring bloom. Glob Change Biol 14:1199–1208. doi:10.1111/j.1365-2486.2008.01571.x CrossRefGoogle Scholar
  61. Sommer U, Lewandowska A (2011) Climate change and the phytoplankton spring bloom: warming and overwintering zooplankton have similar effects on phytoplankton. Glob Change Biol 17:154–162. doi:10.1111/j.1365-2486.2010.02182.x CrossRefGoogle Scholar
  62. Sommer U, Sommer F (2006) Cladocerans versus copepods: the cause of contrasting top-down controls on freshwater and marine phytoplankton. Oecologia 147:183–194. doi:10.1007/s00442-005-0320-0 CrossRefGoogle Scholar
  63. Sommer U, Stibor H (2002) Copepoda–Cladocera–Tunicata: the role of three major mesozooplankton groups in pelagic food webs. Ecol Res 17:161–174. doi:10.1046/j.1440-1703.2002.00476.x CrossRefGoogle Scholar
  64. Sommer F, Saage A, Santer B, Hansen T, Sommer U (2005a) Linking foraging strategies of marine calanoid copepods to patterns of nitrogen stable isotope signatures in a mesocosm study. Marine Ecology-Progress Series 286:99–106. doi:10.3354/meps286099 CrossRefGoogle Scholar
  65. Sommer U, Hansen T, Blum O, Holzner N, Vadstein O, Stibor H (2005b) Copepod and microzooplankton grazing in mesocosms fertilised with different Si:N ratios: no overlap between food spectra and Si:N influence on zooplankton trophic level. Oecologia 142:274–283. doi:10.1007/s00442-004-1708-y CrossRefGoogle Scholar
  66. Sommer U, Aberle N, Engel A, Hansen T, Lengfellner K, Sandow M, Wohlers J, Zöllner E, Riebesell U (2007) An indoor mesocosm system to study the effect of climate change on the late winter and spring succession of Baltic Sea phyto- an zooplankton. Oecologia 150:655–667. doi:10.1007/s00442-006-0539-4 CrossRefGoogle Scholar
  67. Stibor H, Vadstein O, Diehl S, Gelzleichter A, Hansen T, Hantzsche F, Katechakis A, Lippert B, Løseth K, Peters C, Roederer W, Sandow M, Sundt-Hansen L, Olsen Y (2004) Copepods act as a switch between alternative trophic cascades in marine pelagic food webs. Ecol Lett 7:321–328. doi:10.1111/j.1461-0248.2004.00580.x CrossRefGoogle Scholar
  68. Tadonleke RD, Sime-Ngado T (2000) Rates of growth and microbial grazing mortality of phytoplankton in a recent artificial lake. Aquat Microb Ecol 22:301–313. doi:10.3354/ame022301 CrossRefGoogle Scholar
  69. Thackeray SJ, Jones ID, Maberly SC (2008) Long-term change in the phenology of spring phytoplankton: species-specific responses to nutrient enrichment and climatic change. J Ecol 96:523–535. doi:10.1111/j.1365-2745.2008.01355.x CrossRefGoogle Scholar
  70. Tillmann U (2004) Interactions between planktonic microalgae and protozoan grazers. Journal of Eukayotic Microbiology 51:156–168CrossRefGoogle Scholar
  71. Tilzer MM, Elbrächter M, Gieskes WW, Beese B (1986) Light-temperature interactions in the control of photosynthesis in Antarctic phytoplankton. Polar Biol 5:105–111. doi:10.1007/BF00443382 CrossRefGoogle Scholar
  72. Vadstein O, Stibor H, Lippert B, Løseth K, Roederer W, Sundt-Hansen L, Olsen Y (2004) Moderate increase in the biomass of omnivorous copepods may ease grazing control of planktonic algae. Mar Ecol Prog Ser 270:199–207. doi:10.3354/meps270199 CrossRefGoogle Scholar
  73. Vincent D, Hartmann HJ (2001) Contribution of ciliated microprotozoans and dinoflagellates to the diet of three copepod species in the Bay of Biscay. Hydrobiologia 443:193–204. doi:10.1023/A:1017502813154 CrossRefGoogle Scholar
  74. Wasmund N, Göbel J, Von Bodungen B (2008) 100-years-changes in the phytoplankton community of Kiel Bight (Baltic Sea). J Mar Syst 73:300–322. doi:10.1016/j.jmarsys.2006.09.009 CrossRefGoogle Scholar
  75. Wiklund AKE, Dahlgren K, Sundelin B, Andersson A (2009) Effects of warming and shifts of pelagic food web structure on benthic productivity in a coastal marine system. Mar Ecol Prog Ser 396:13–25. doi:10.3354/meps08290 CrossRefGoogle Scholar
  76. Wiltshire KH, Malzahn AM, Wirtz K, Greve W, Janisch S, Mangelsdorf P, Manly BFJ, Boersma M (2008) Resilience of North Sea phytoplankton spring bloom dynamics: an analysis of long-term data at Helgoland Roads. Limnol Oceanogr 53:1294–1302. doi:10.4319/lo.2008.53.4.1294 CrossRefGoogle Scholar
  77. Wiltshire KH, Kraberg A, Bartsch I, Boersma M, Franke HD, Freund J, Gebühr C, Gerdts G, Stockmann K, Wichels A (2010) Helgoland Roads, North Sea: 45 years of change. Estuaries Coasts 33:295–310. doi:10.1007/s12237-009-9228-y CrossRefGoogle Scholar
  78. Winder M, Reuter JE, Schladow SG (2009) Lake warming favours small-sized planktonic diatom species. Proceedings of the Royal Society B—Biological Sciences 276:427–435. doi:10.1098/rspb.2008.1200 CrossRefGoogle Scholar
  79. Wohlers J, Engel A, Zöllner E, Breithaupt P, Jürgens K, Hoppe HG, Sommer U, Riebesell U (2009) Changes in biogenic carbon flow in response to sea surface warming. Proc Nat Acad Sci USA 106:7067–7072. doi:10.1073/pnas.0812743106 CrossRefGoogle Scholar
  80. Yvon-Durocher G, Montoya JM, Trimmer M, Woodward G (2011) Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems. Glob Change Biol 17:1681–1694. doi:10.1111/j.1365-2486.2010.02321.x CrossRefGoogle Scholar
  81. Zöllner E, Santer B, Boersma M, Hoppe HG, Jürgens K (2003) Cascading predation effects of Daphnia and copepods on microbial food web components. Freshw Biol 48:2174–2193. doi:10.1046/j.1365-2426.2003.01158.x CrossRefGoogle Scholar
  82. Zöllner E, Hoppe HG, Sommer U, Jürgens K (2009) Effect of zooplankton-mediated trophic cascades on marine microbial food web components (bacteria, nanoflagellates, ciliates). Limnol Oceanogr 54:262–275. doi:10.4319/lo.2009.54.1.0262 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Toni Klauschies
    • 1
  • Barbara Bauer
    • 1
    • 2
  • Nicole Aberle-Malzahn
    • 3
  • Ulrich Sommer
    • 2
  • Ursula Gaedke
    • 1
  1. 1.Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
  2. 2.Helmholtz Centre for Ocean Research Kiel (GEOMAR)KielGermany
  3. 3.Alfred Wegener Institute for Polar and Marine Research at Biologische Anstalt HelgolandHelgolandGermany

Personalised recommendations