Advertisement

Marine Biology

, Volume 159, Issue 11, pp 2519–2531 | Cite as

Assessing the effects of climate change on the distribution of pulmonate freshwater snail biodiversity

  • M. Cordellier
  • A. Pfenninger
  • B. Streit
  • M. Pfenninger
Original Paper

Abstract

Global warming is expected to profoundly change the characteristics of freshwater habitats. Increasing evaporation, lower oxygen concentration due to increased water temperatures and changes in precipitation pattern are likely to affect the survival and reproduction of pulmonate freshwater gastropods. Our statistical niche modelling analysis suggests that for a great proportion of the North-West European genera, the range sizes were predicted to decrease by 2,080, even if unlimited dispersal was assumed. The forecasted warming in the cooler northern ranges predicted the emergence of new suitable areas, as well as drastically reduced available habitat in the southern part of the studied region. Phylogenetic signal was inferred for one dimension of the climatic niche. Independent contrast analyses, taking into account the phylogenetic relationships between the taxa, showed a positive correlation between the genera’s climate niche width and the size of future suitable area. In summary, the results predict a profound faunal freshwater gastropod shift for Central Europe, either permitting the establishment of species currently living south of the studied region or permitting the proliferation of organisms relying on the same food resources, if dispersal abilities do not match the rate of climate change.

Keywords

Random Forest Phylogenetic Signal Suitable Area Multivariate Adaptive Regression Spline Freshwater Snail 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was performed at the University of Frankfurt and at the Biodiversity and Research Centre. We thank K. Kuhn, R. Kraus, H. Geupel and S. Trumic for technical assistance. C. Albrecht kindly provided samples. We thank also the curators R. Janssen, J. Ablett, T. Backeljau, Z. Fehér, K. Edlinger and late M. Gosteli for access to museum collections. L. Sonesten and J. Økland helped with the use of existing databases. O. Tackenberg and I. Marzolff helped with the use of ArcView and with other GIS-related issues. The work received financial support within the AQUASHIFT DFG priority program (Grant MP390/4-1 to 4-3) and from the research funding programme “LOEWE—Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz” of Hesse’s Ministry of Higher Education, Research, and the Arts.

References

  1. Anderson RP, Gomez-Laverde M, Peterson AT (2002) Geographical distributions of spiny pocket mice in South America: insights from predictive models. Glob Ecol Biogeogr 11:131–141CrossRefGoogle Scholar
  2. Araujo MB, New M (2007) Ensemble forecasting of species distribution. Trends Ecol Evol 22:42–47CrossRefGoogle Scholar
  3. Araujo MB, Pearson RG, Thuillier W, Erhard M (2005) Validation of species-climate impact models under climate change. Glob Change Biol 11:1504–1513CrossRefGoogle Scholar
  4. Araujo MB, Thuiller W, Pearson RG (2006) Climate warming and the decline of amphibians and reptiles in Europe. J Biogeogr 33:1712–1728CrossRefGoogle Scholar
  5. Bilton DT, Freeland JR, Okamura B (2001) Dispersal in freshwater invertebrates. Annu Rev Ecol Syst 32:159–181CrossRefGoogle Scholar
  6. Blomberg SP, Garland T (2002) Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. J Evol Biol 15:899–910CrossRefGoogle Scholar
  7. Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745Google Scholar
  8. Brown LC, Duguay CR (2010) The response and role of ice cover in lake-climate interactions. Prog Phys Geogr 34:671–704CrossRefGoogle Scholar
  9. Buisson L, Thuiller W, Lek S, Li P, Grenouillet G (2008) Climate change hastens the turnover of stream fish assemblages. Glob Change Biol 14:2232–2248CrossRefGoogle Scholar
  10. Buisson L, Thuiller W, Casajus N, Lek S, Grenouillet G (2010) Uncertainty in ensemble forecasting of species distribution. Glob Change Biol 16:1145–1157CrossRefGoogle Scholar
  11. Burgmer T, Hillebrand H, Pfenninger M (2007) Effects of climate-driven temperature changes on the diversity of freshwater macroinvertebrates. Oecologia 151:93–103CrossRefGoogle Scholar
  12. Clarke A (2003) Costs and consequences of evolutionary temperature adaptation. Trends Ecol Evol 18:573–581CrossRefGoogle Scholar
  13. Cordellier M, Pfenninger M (2008) Climate-driven range dynamics in the freshwater limpet Ancylus fluviatilis (Pulmonata, Basommatophora). J Biogeogr 35:1580–1592CrossRefGoogle Scholar
  14. Cordellier M, Pfenninger M (2009) Inferring the past to predict the future: climate modelling predictions and phylogeography for the freshwater gastropod Radix balthica (Pulmonata, Basommatophora). Mol Ecol 18:534–544CrossRefGoogle Scholar
  15. Dépraz A, Cordellier M, Hausser J, Pfenninger M (2008) Postglacial recolonisation at a snail’s pace (Trochulus villosus): confronting competing refugia hypotheses using model selection. Mol Ecol 17:2449–2462CrossRefGoogle Scholar
  16. Dillon RT (2000) The ecology of freshwater molluscs. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  17. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214CrossRefGoogle Scholar
  18. Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:699–710CrossRefGoogle Scholar
  19. Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann G, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton MJ, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151CrossRefGoogle Scholar
  20. Emerson BC, Gillespie RG (2008) Phylogenetic analysis of community assembly and structure over space and time. Trends Ecol Evol 23:619–630CrossRefGoogle Scholar
  21. Felsenstein J (1985) Confidence limits on phylogenies using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  22. Figuerola J, Green AJ, Michot TC (2005) Invertebrate eggs can fly: evidence of waterfowl-mediated gene flow in aquatic invertebrates. Am Nat 165:274–280CrossRefGoogle Scholar
  23. Frisch D, Green AJ, Figuerola J (2007) High dispersal capacity of a broad spectrum of aquatic invertebrates via waterbirds. Aquat Sci 69:568–574CrossRefGoogle Scholar
  24. Gates DM (1993) Climate change and its biological consequences. Sinauer Associates, SunderlandGoogle Scholar
  25. Glöer P (2002) Mollusca I. Süßwassergastropoden Nord—und Mitteleuropas Bestimmungsschlüssel, Lebensweise, Verbreitung. ConchBooks, HackenheimGoogle Scholar
  26. Glöer P, Meier-Brook C (1998) Süßwassermollusken, HamburgGoogle Scholar
  27. Graham CH, Ferrier S, Huettman F, Moritz C, Peterson AT (2004) New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol Evol 19:497–503CrossRefGoogle Scholar
  28. Guisan A, Thuillier W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009CrossRefGoogle Scholar
  29. Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, OxfordGoogle Scholar
  30. Hijmans RJ, Graham CH (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Glob Change Biol 12:2272–2281CrossRefGoogle Scholar
  31. Hijmans RJ, Garrett KA, Huaman Z, Zhang DP, Schreuder M, Bonierbale M (2000) Assessing the geographic representativeness of genebank collections: the case of Bolivian wild potatoes. Conserv Biol 14:1755–1765CrossRefGoogle Scholar
  32. Horak P, Kolarova L (2011) Snails, waterfowl and cercarial dermatitis. Freshw Biol 56:779–790CrossRefGoogle Scholar
  33. Houghton JT, Ding Y, Griggs DJ, Noguer M, Van Der Linden PJ, Dai X, Maskell K, Johnson CA (2001) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  34. Hutchinson GE (1957) Concluding remarks. Cold Spring Harbor Symp Quant Biol 22:415–427CrossRefGoogle Scholar
  35. Jablonski D, Finarelli JA (2009) Congruence of morphologically-defined genera with molecular phylogenies. Proc Natl Acad Sci USA 106:8262–8266CrossRefGoogle Scholar
  36. Jarne P, Städler T (1995) Population genetic structure and mating system evolution in freshwater pulmonates. Cell Mol Life Sci 51:482–497CrossRefGoogle Scholar
  37. Köckemann B, Buschmann H, Leuschner C (2009) The relationships between abundance, range size and niche breadth in Central European tree species. J Biogeogr 36:854–864CrossRefGoogle Scholar
  38. Lydeard C, Holznagel WE, Schnare MN, Gutell RR (2000) Phylogenetic analysis of molluscan mitochondrial LSU rDNA sequences and secondary structures. Mol Phylogenet Evol 15:83–102CrossRefGoogle Scholar
  39. Malone CR (1965) Killdeer (Charadrius vociferus Linnaeus) as a means of dispersal for aquatic gastropods. Ecology 46:551–552CrossRefGoogle Scholar
  40. Marten A, Brändle M, Brandl R (2006) Habitat type predicts genetic population differentiation in freshwater invertebrates. Mol Ecol 15:2643–2651CrossRefGoogle Scholar
  41. Martinez-Meyer E, Peterson AT, Hargrove WW (2004) Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity. Glob Ecol Biogeogr 13:305–314CrossRefGoogle Scholar
  42. Martins EP (2004) COMPARE, version 4.6b. Computer programs for the statistical analysis of comparative data. Department of Biology, Indiana University, BloomingtonGoogle Scholar
  43. Nakicenovic N (2000) Greenhouse gas emissions scenarios. Technol Forecast Soc Chang 65:149–166CrossRefGoogle Scholar
  44. Økland J (1990) Lakes and snails: environment and gastropoda in 1500 Norwegian lakes, ponds and rivers. U.B.S./Dr. W. Backhuys, OegstgeestGoogle Scholar
  45. Parmesan C, Ryrholm N, Stefanescu C, Hill JK, Thomas CD, Descimon H, Huntley B, Kaila L, Kullberg J, Tammaru T, Tennent WJ, Thomas JA, Warren M (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579–583CrossRefGoogle Scholar
  46. Peterson AT (2001) Predicting species’ geographic distributions based on ecological niche modeling. Condor 103:599–605CrossRefGoogle Scholar
  47. Peterson AT, Holt RD (2003) Niche differentiation in Mexican birds: using point occurrences to detect ecological innovation. Ecol Lett 6:774–782CrossRefGoogle Scholar
  48. Peterson AT, Soberon J, Sanchez-Cordero V (1999) Conservatism of ecological niches in evolutionary time. Science 285:1265–1267CrossRefGoogle Scholar
  49. Pfenninger M, Staubach S, Albrecht C, Streit B, Schwenk K (2003) Ecological and morphological differentiation among cryptic evolutionary lineages in freshwater limpets of the nominal form-group Ancylus fluviatilis (O.F. Müller, 1774). Mol Ecol 12:2731–2745CrossRefGoogle Scholar
  50. Pfenninger M, Cordellier M, Streit B (2006) Comparing the efficacy of morphologic and DNA-based taxonomy in the freshwater gastropod genus Radix (Basommatophora, Pulmonata). BMC Evol Biol 6:100CrossRefGoogle Scholar
  51. Pfenninger M, Nowak C, Magnin F (2007) Intraspecific range dynamics and niche evolution in Candidula land snail species. Biol J Linn Soc 90:303–317CrossRefGoogle Scholar
  52. Pfenninger M, Salinger M, Haun T, Feldmeyer B (2011) Factors and processes shaping the population structure and distribution of genetic variation across the species range of the freshwater snail Radix balthica (Pulmonata, Basommatophora). BMC Evol Biol 11:135CrossRefGoogle Scholar
  53. Prasad AM, Iverson LR, Liaw A (2006) Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9:181–199CrossRefGoogle Scholar
  54. Prinzing A, Durka W, Klotz S, Brandl R (2001) The niche of higher plants: evidence for phylogenetic conservatism. Proc R Soc B Biol Sci 268:1–7CrossRefGoogle Scholar
  55. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  56. Rice NH, Martinez-Meyer E, Peterson AT (2003) Ecological niche differentiation in the Aphelocoma jays: a phylogenetic perspective. Biol J Linn Soc 80:369–383CrossRefGoogle Scholar
  57. Roy K, Hunt G, Jablonski D, Krug AZ, Valentine JW (2009) A macroevolutionary perspective on species range limits. Proc R Soc B Biol Sci 276:1485–1493CrossRefGoogle Scholar
  58. Ruegg K, Hijmans RJ, Moritz C (2006) Climate change and the origin of migratory pathways in the Swainson’s Thrush, Catharus ustulatus. J Biogeogr 33:1172–1182CrossRefGoogle Scholar
  59. Skov F, Svenning JC (2004) Potential impact of climatic change on the distribution of forest herbs in Europe. Ecography 27:366–380CrossRefGoogle Scholar
  60. Thuiller W (2004) Patterns and uncertainties of species’ range shifts under climate change. Glob Chang Biol 10:2020–2027CrossRefGoogle Scholar
  61. Thuiller W, Lafourcade B, Engler R, Araujo MB (2009) BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32:369–373CrossRefGoogle Scholar
  62. van der Schalie H, Berry E (1973) The effects of temperature on growth and reproduction of aquatic snails. Sterkiana 50:1–92Google Scholar
  63. Virkkala R, Marmion M, Heikkinen RK, Thuiller W, Luoto M (2010) Predicting range shifts of northern bird species: influence of modelling technique and topography. Acta Oecol 36:269–281CrossRefGoogle Scholar
  64. Wiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB, Cornell HV, Damschen EI, Davies TJ, Grytnes JA, Harrison SP, Hawkins BA, Holt RD, McCain CM, Stephens PR (2011) Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett 13:1310–1324CrossRefGoogle Scholar
  65. Williams G, Layman KL, Stefan HG (2004) Dependence of lake ice covers on climatic, geographic and bathymetric variables. Cold Reg Sci Technol 40:145–164CrossRefGoogle Scholar
  66. Woodward G, Hildrew AG (2002) Food web structure in riverine landscapes. Freshw Biol 47:777–798CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • M. Cordellier
    • 1
    • 2
  • A. Pfenninger
    • 1
  • B. Streit
    • 1
  • M. Pfenninger
    • 2
  1. 1.Abteilung Ökologie und Evolution, Institut für ÖkologieEvolution und Diversität der Goethe-UniversitätFrankfurtGermany
  2. 2.Arbeitsgruppe Molekulare ÖkologieForschungszentrum Biodiversität und Klima der Senckenberg Gesellschaft für Naturforschung und der Goethe-UniversitätFrankfurtGermany

Personalised recommendations