Marine Biology

, Volume 159, Issue 5, pp 975–985

Is the Great Barracuda (Sphyraena barracuda) a reef fish or a pelagic fish? The phylogeographic perspective

  • Toby S. Daly-Engel
  • John E. Randall
  • Brian W. Bowen
Original Paper


Current taxonomy indicates a single global species of the Great Barracuda (Sphyraena barracuda) despite differences in color and behavior between Atlantic and Pacific forms. To investigate these differences and qualify the dispersal characteristics of this unique coastal–pelagic teleost (bony fish), we conducted a global phylogeographic survey of 246 specimens from thirteen sampling locations using a 629-base pair fragment of mtDNA cytochrome b. Data indicate high overall gene flow in the Indo-Pacific over large distances (>16,500 km) bridging several biogeographic barriers. The West Atlantic population contains an mtDNA lineage that is divergent from the Indo-Pacific (d = 1.9%), while the East Atlantic (N = 23) has two mutations (d = 0.6%) apart from the Indo-Pacific. While we cannot rule out distinct evolutionary partitions among ocean basins based on behavior, coloration, and near-monophyly between Atlantic and Indo-Pacific subpopulations, more investigation is required before taxonomic status is revised. Overall, the pattern of high global dispersal and connectivity in S. barracuda more closely resembles those reported for large oceanic predators than reef-associated teleosts.


  1. Alvarado Bremer JR, Mejuto J, Greig TW, Ely B (1996) Global population structure of the swordfish (Xiphias gladius L.) as revealed by analysis of the mitochondrial DNA control region. J Exp Mar Biol Ecol 197:295–310CrossRefGoogle Scholar
  2. Alvarado Bremer JR, Vinas J, Mejuto J, Ely B, Pla C (2005) Comparative phylogeography of Atlantic bluefin tuna and swordfish: the combined effects of vicariance, secondary contact, introgression, and population expansion on the regional phylogenies of two highly migratory pelagic fishes. Mol Phylogenet Evol 36:169–187CrossRefGoogle Scholar
  3. Barber PH, Erdmann MV, Palumbi SR (2006) Comparative phylogeography of three codistributed stomatopods: origins and timing of regional diversification in the coral triangle. Evolution 60:1825–1839Google Scholar
  4. Bienfang P, Oben B, DeFelice P, Moeller K, Huncik P, Oben R, Toonen R, Daly-Engel T, Bowen B (2008) Ciguatera: the detection of neurotoxins in carnivorous reef fish from the coast of Cameroon, West Africa. Afr J Mar Sci 30:533–540CrossRefGoogle Scholar
  5. Bourjea J, Lapegue S, Gagnevin L, Broderick D, Mortimer JA, Ciccione S, Roos D, Taquet C, Grizel H (2007) Phylogeography of the green turtle, Chelonia mydas, in the Southwest Indian Ocean. Mol Ecol 16:175–186CrossRefGoogle Scholar
  6. Bowen BW, Karl SA (2007) Population genetics and phylogeography of sea turtles. Mol Ecol 16:4886–4907CrossRefGoogle Scholar
  7. Bowen BW, Kamezaki N, Limpus CJ, Hughes GR, Meylan AB, Avise JC (1994) Global phylogeography of the loggerhead turtle (Caretta caretta) as indicated by mitochondrial DNA haplotypes. Evolution 48:1820–1828CrossRefGoogle Scholar
  8. Bowen BW, Bass AL, Rocha LA, Grant WS, Robertson DR (2001) Phylogeography of the trumpetfishes (Aulostomus): ring species complex on a global scale. Evolution 55:1029–1039CrossRefGoogle Scholar
  9. Bowen BW, Bass AL, Muss AJ, Carlin J, Robertson DR (2006a) Phylogeography of two Atlantic squirrelfishes (family Holocentridae): exploring pelagic larval duration and population connectivity. Mar Biol 149:899–913CrossRefGoogle Scholar
  10. Bowen BW, Muss A, Rocha LA, Grant WS (2006b) Shallow mtDNA coalescence in Atlantic pygmy angelfishes (Genus Centropyge) indicates a recent invasion from the Indian Ocean. J Hered 97:1–12CrossRefGoogle Scholar
  11. Briggs JC (1960) Fishes of worldwide (Circumtropical) distribution. Copeia 3:171–180CrossRefGoogle Scholar
  12. Briggs JC (1974a) Marine zoogeography. McGraw-Hill, New YorkGoogle Scholar
  13. Briggs JC (1974b) Operation of zoogeographic barriers. Syst Zool 23:248–256CrossRefGoogle Scholar
  14. Briggs JC, Bowen BW (2012) A realignment of marine biogeographic provinces with particular reference to fish distributions. J Biogeogr 39:12–30Google Scholar
  15. Castro ALF, Stewart BS, Wilson SG, Hueter RE, Meekan MG, Motta PJ, Bowen BW, Karl SA (2007) Population genetic structure of Earth’s largest fish, the whale shark (Rhincodon typus). Mol Ecol 16:5183–5192CrossRefGoogle Scholar
  16. Chow S, Ushiama H (1995) Global population structure of albacore (Thunnus alalunga) inferred by RFLP analysis of the mitochondrial ATPase gene. Mar Biol 123:39–45CrossRefGoogle Scholar
  17. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660CrossRefGoogle Scholar
  18. Collette BB, McDowell JR, Graves JE (2006) Phylogeny of recent billfishes (Xiphioidei). Bull Mar Sci 79:455–468Google Scholar
  19. Daly-Engel TS, Duncan KM, Holland KN, Coffey JP, Nance HA, Toonen RJ, Bowen BW (2012) Global molecular phylogeography reveals male-mediated dispersal in the endangered scalloped hammerhead shark (Sphyrna lewini). PLoS ONE 7(1):e29986Google Scholar
  20. de Sylva DP (1963) Systematics and life history of the great barracuda Sphyraena barracuda Walbaum. University of Miami Press, Coral GablesGoogle Scholar
  21. de Sylva DP (1968) Systematics and life history of the great barracuda Sphyraena barracuda (Walbaum). Toxicon 5:227Google Scholar
  22. DiBattista JD, Wilcox C, Craig MT, Rocha CR, Bowen BW (2011) Phylogeography of the Pacific blueline surgeonfish Acanthurus nigroris reveals a cryptic species in the Hawaiian archipelago. J Mar Biol, Article ID 839134Google Scholar
  23. Drew JA, Barber PH (2009) Sequential cladogenesis of Pomacentrus moluccensis (Bleeker, 1853) supports the peripheral origin of marine biodiversity in the Indo-Australian archipelago. Mol Phylogenet Evol 53:355–359CrossRefGoogle Scholar
  24. Duncan KM, Martin AP, Bowen BW, De Couet HG (2006) Global phylogeography of the scalloped hammerhead (Sphyrna lewini). Mol Ecol 15:2239–2251CrossRefGoogle Scholar
  25. Durand JD, Collet A, Chow S, Guinand B, Borsa P (2005) Nuclear and mitochondrial DNA markers indicate unidirectional gene flow of Indo-Pacific to Atlantic bigeye tuna (Thunnus obesus) populations, and their admixture off southern Africa. Mar Biol 147:313–322CrossRefGoogle Scholar
  26. Eble JA, Rocha LA, Craig MT, Bowen BW (2011a) Not all larvae stay close to home: insights into marine population connectivity with a focus on the brown surgeonfish (Acanthurus nigrofuscus). J Mar Biol, Article ID 518516Google Scholar
  27. Eble JA, Sorenson LS, Papastamatiou YP, Basch L, Toonen RJ, Bowen BW (2011b) Escaping paradise: larval export from Hawaii in an Indo-Pacific reef fish, the yellow tang. Mar Ecol Prog Ser 426:245–258CrossRefGoogle Scholar
  28. Edwards A (1980) Fish and Fisheries of Saint Helena Island. Center for Tropical Coastal Management Studies, University of Newcastle upon Tyne, U.K.Google Scholar
  29. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567CrossRefGoogle Scholar
  30. Faunce CH, Serafy JE (2008) Selective use of mangrove shorelines by snappers, grunts, and great barracuda. Mar Ecol Prog Ser 356:153–162CrossRefGoogle Scholar
  31. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925Google Scholar
  32. Gaither MR, Toonen RJ, Robertson DR, Planes S, Bowen BW (2010) Genetic evaluation of marine biogeographical barriers: perspectives from two widespread Indo-Pacific snappers (Lutjanus kasmira and Lutjanus fulvus). J Biogeogr 37:133–147CrossRefGoogle Scholar
  33. Gaither MR, Bowen BW, Bordenave T-R, Rocha CR, Newman SJ, Gomez JA, Van Herwerden L, Craig MT (2011) Phylogeography of the reef fish Cephalopholus argus (Epinephelidae) indicates Pleistocene isolation across the Indo-Pacific barrier with contemporary overlap in the Coral Triangle. BMC Evol Biol 11:89Google Scholar
  34. Graves JE, McDowell JR (1995) Inter-ocean genetic divergence of istiophorid billfishes. Mar Biol 122:193–203Google Scholar
  35. Graves JE, McDowell JR (2003) Stock structure of the world’s istiophorid billfishes: a genetic perspective. Mar Freshw Res 54:287–298CrossRefGoogle Scholar
  36. Horne JB, Van Herwerden L, Choat JH, Robertson DR (2008) High population connectivity across the Indo-Pacific: congruent lack of phylogeographic structure in three reef fish congeners. Mol Phylogenet Evol 49:629–638CrossRefGoogle Scholar
  37. Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755CrossRefGoogle Scholar
  38. Hughes GR (1974) The sea turtles of southeast Africa. I. Status, morphology, and distributions. Oceanographic Research Institute Investigational Report 35:1–144Google Scholar
  39. Johns GC, Avise JC (1998) A comparative summary of genetic distances in the vertebrates from the mitochondrial cytochrome b gene. Mol Biol Evol 15:1481–1490CrossRefGoogle Scholar
  40. Jorgensen SJ, Reeb CA, Chapple TK, Anderson S, Perle C, Van Sommeran SR, Fritz-Cope C, Brown AC, Klimley AP, Block BA (2010) Philopatry and migration of Pacific white sharks. Proc R Soc B 277:679–688CrossRefGoogle Scholar
  41. Keeney DB, Heist EJ (2006) Worldwide phylogeography of the blacktip shark (Carcharhinus limbatus) inferred from mitochondrial DNA reveals isolation of western Atlantic populations coupled with recent Pacific dispersal. Mol Ecol 15:3669–3679CrossRefGoogle Scholar
  42. Lessios HA (2008) The great American schism: divergence of marine organisms after the rise of the Central American isthmus. Annu Rev Ecol Evol Syst 39:63–91CrossRefGoogle Scholar
  43. Muss A, Robertson DR, Stepien CA, Wirtz P, Bowen BW (2001) Phylogeography of the genus Ophioblennius: the role of ocean currents and geography in reef fish evolution. Evolution 55:561–572CrossRefGoogle Scholar
  44. Nakamura I (1985) FAO species catalogue, vol 5. Billfishes of the world: an annotated and illustrated catalogue of marlins, sailfishes, spearfishes and swordfishes known to date FAO Fisheries Synopsis, RomeGoogle Scholar
  45. Oremus M, Gales R, Dalebout ML, Funahashi N, Endo T, Kage T, Steel D, Baker SC (2009) Worldwide mitochondrial DNA diversity and phylogeography of pilot whales (Globicephala spp.). Biol J Linn Soc 98:729–744CrossRefGoogle Scholar
  46. Pardini AT, Jones CS, Noble LR, Kreiser B, Malcolm H, Bruce BD, Stevens JD, Cliff G, Scholl MC, Francis M, Duffy CAJ, Martin AP (2001) Sex-biased dispersal of great white sharks. Nature 412:139–140CrossRefGoogle Scholar
  47. Pauly D (1978) A preliminary compilation of fish length growth parameters. Ber Inst Meereskd Christian-Albrechts-Univ Kiel 55:1–200Google Scholar
  48. Peeters FJC, Acheson R, Brummer GJA, de Ruijter WPM, Schneider RR, Ganssen GM, Ufkes E, Kroon D (2004) Vigorous exchange between the Indian and Atlantic Oceans at the end of the past five glacial periods. Nature 430:661–665CrossRefGoogle Scholar
  49. Rambaut A, Drummond AJ (2003) Tracer version 1.3.
  50. Randall JE (1967) Food habits of reef fishes of the West Indies. Stud Trop Oceanogr 5:665–847Google Scholar
  51. Randall JE (1998) Zoogeography of shore fishes of the Indo-Pacific region. Zool Stud 37:227–268Google Scholar
  52. Randall JE (2007) Reef and shore fishes of the Hawaiian Islands. University of Hawaii Press, HonoluluGoogle Scholar
  53. Reeb CA, Arcangeli L, Block BA (2000) Structure and migration corridors in Pacific populations of the Swordfish Xiphius gladius, as inferred through analyses of mitochondrial DNA. Mar Biol 136:1123–1131CrossRefGoogle Scholar
  54. Reece JS, Bowen BW, Joshi K, Goz V, Larson AF (2010a) Phylogeography of two moray eels indicates high dispersal throughout the Indo-Pacific. J Hered 101:391–402CrossRefGoogle Scholar
  55. Reece JS, Bowen BW, Smith DG, Larson AF (2010b) Molecular phylogenetics of moray eels (Murenidae) demonstrates multiple origins of a shell-crushing jaw (Gymnomuraena, Echidna) and multiple colonizations of the Atlantic Ocean. Mol Phylogenet Evol 57:829–835CrossRefGoogle Scholar
  56. Robertson DR, Grove JS, Jack S, McCosker JE (2004) Tropical transpacific shore fishes. Pac Sci 58:507–565CrossRefGoogle Scholar
  57. Rocha LA, Robertson DR, Rocha CR, Van Tassel JL, Craig MT, Bowen BW (2005) Recent invasion of the tropical Atlantic by an Indo-Pacific coral reef fish. Mol Ecol 14:3921–3928CrossRefGoogle Scholar
  58. Rocha LA, Craig MT, Bowen BW (2007) Phylogeography and the conservation genetics of coral reef fishes. Coral Reefs 26:501–512CrossRefGoogle Scholar
  59. Rogers AR, Harpending H (1992) Population-growth makes waves in the distribution of pairwise genetic-differences. Mol Biol Evol 9:552–569Google Scholar
  60. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefGoogle Scholar
  61. Ronquist F, Huelsenbeck JP, van der Mark P (2005) MrBayes 3.1 manual. pp 1–69Google Scholar
  62. Schultz JK, Feldheim KA, Gruber SH, Ashley MV, McGovern TM, Bowen BW (2008) Global phylogeography and seascape genetics of the lemon sharks (genus Negaprion). Mol Ecol 17:5336–5348CrossRefGoogle Scholar
  63. Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analyses. Can J Zool 69:82–90CrossRefGoogle Scholar
  64. Shannon LV (1985) The Benguela ecosystem. I. Evolution of the Benguela physical features and processes. Oceanogr Mar Biol Annu Rev 23:105–182Google Scholar
  65. Song CB, Near TJ, Page JM (1998) Phylogenetic relations among Percid fishes as inferred from mitochondrial cytochrome b DNA sequence data. Mol Phylogenet Evol 10:343–353CrossRefGoogle Scholar
  66. Strathmann RR (1993) Hypotheses on the origins of marine larvae. Ann Rev Ecol Syst 24:89–117CrossRefGoogle Scholar
  67. Sunnucks P, Hales DF (1996) Numerous transposed sequences of mitochondrial cytochrome oxidase I–II in aphids of the genus Sitobion (Hemiptera: Aphididae). Mol Biol Evol 13:510–524CrossRefGoogle Scholar
  68. Swofford DL (2000) PAUP*. Phylogeny analysis using parsimony (*and Other Methods), Version 4. Sinauer Associates, SunderlandGoogle Scholar
  69. Taberlet P, Meyer A, Bouvet J (1992) Unusually large mitochondrial variation in populations of the blue tit, Parus caeruleus. Mol Ecol 1:27–36CrossRefGoogle Scholar
  70. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595Google Scholar
  71. Tamura K, Nei M (1993) Estimation of the number of nucelotide substitutions in the control region of mitiochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526Google Scholar
  72. Taylor MS, Hellberg ME (2005) Marine radiations at small geographic scales: speciation in neotropical reef gobies (Elacatinus). Evolution 59:374–385Google Scholar
  73. Theisen TC, Bowen BW, Lanier W, Baldwin JD (2008) High connectivity on a global scale in the pelagic wahoo, Acanthocybium solandri (tuna family Scombridae). Mol Ecol 17:4233–4247CrossRefGoogle Scholar
  74. Van Herwerden L, Choat JH, Newman SJ, Leray M, Hillersoy G (2009) Complex patterns of population structure and recruitment of Plectropomus leopardus (Pisces: Epinephelidae) in the Indo-West Pacific: implications for fisheries management. Mar Biol 156:1595–1607CrossRefGoogle Scholar
  75. Weersing KA, Toonen RJ (2009) Population genetics, larval dispersal, and demographic connectivity in marine systems. Mar Ecol Prog Ser 393:1–12CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Toby S. Daly-Engel
    • 1
    • 4
  • John E. Randall
    • 2
  • Brian W. Bowen
    • 3
  1. 1.Department of ZoologyUniversity of Hawaii at MānoaHonoluluUSA
  2. 2.Bishop MuseumHonoluluUSA
  3. 3.Hawaii Institute of Marine BiologyUniversity of HawaiiKaneoheUSA
  4. 4.University of ArizonaTucsonUSA

Personalised recommendations