Advertisement

Marine Biology

, Volume 159, Issue 3, pp 661–674 | Cite as

Phylogeography of the marine interstitial nemertean Ototyphlonemertes parmula (Nemertea, Hoplonemertea) reveals cryptic diversity and high dispersal potential

  • Alexander Y. Tulchinsky
  • Jon L. Norenburg
  • James M. Turbeville
Original Paper

Abstract

We conducted a phylogeographic study of the meiofaunal nemertean Ototyphlonemertes parmula, an apparent species complex from the littoral zone of coarse-grained beaches, using a 494-bp fragment of the mitochondrial cytochrome oxidase 3 gene (cox3). Six populations from the Gulf and Atlantic coasts of Florida, two from New England, and one from the Caribbean were sampled in March and August 2005. Three major lineages were identified, separated by cox3 sequence divergence of 16–18%, with partially overlapping ranges. Tests for hybridization using ISSR markers detected nuclear gene exchange within but not between the major mitochondrial lineages, indicating the presence of cryptic species. One lineage dominating the Atlantic coast of Florida shows no evidence of geographic structuring. Another lineage shows a phylogenetic break between the Atlantic and Gulf coasts, suggesting that unsuitable habitat may act as a barrier to dispersal. Long-distance migration is evidenced by shared haplotypes between Florida and the eastern Caribbean. Overall, the widespread distribution of individual haplotypes and lack of structuring within geographic regions contrast with O. parmula’s strongly sediment-bound lifestyle. We speculate that dispersal of adults by storms and/or sediment transport may be more important than few and potentially short-lived planktonic larvae to explain geographic diversity in O. parmula and may be important for meiofauna in general.

Keywords

Last Glacial Maximum Meiofauna Supplementary Material Table Mismatch Distribution Mitochondrial Lineage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Travel funding was provided by the Smithsonian Institution. We thank the staff at the Smithsonian Marine Station at Fort Pierce, Florida, where collections were processed. We thank D. Smith, A. Nicolas, and B. Brown for assistance with laboratory methods. A. Porter and N. Johnson provided valuable feedback on the manuscript. Thanks also to J. Woodruff, who provided useful information about storm-driven sediment transport, and to anonymous reviewers whose helpful and detailed comments improved this manuscript. This research was supported by National Science Foundation Grant DEB-0089654. This publication represents contribution 871 of the Smithsonian Marine Station at Fort Pierce.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All experiments comply with the current laws of the country in which they were performed.

Supplementary material

227_2011_1844_MOESM1_ESM.doc (530 kb)
Supplementary material 1 (DOC 531 kb)
227_2011_1844_MOESM2_ESM.pdf (13 kb)
Supplementary material 2 (PDF 13 kb)
227_2011_1844_MOESM3_ESM.pdf (9 kb)
Supplementary material 3 (PDF 9 kb)
227_2011_1844_MOESM4_ESM.pdf (107 kb)
Supplementary material 4 (PDF 107 kb)
227_2011_1844_MOESM5_ESM.pdf (134 kb)
Supplementary material 5 (PDF 134 kb)
227_2011_1844_MOESM6_ESM.pdf (129 kb)
Supplementary material 6 (PDF 129 kb)
227_2011_1844_MOESM7_ESM.pdf (156 kb)
Supplementary material 7 (PDF 156 kb)
227_2011_1844_MOESM8_ESM.pdf (148 kb)
Supplementary material 8 (PDF 148 kb)
227_2011_1844_MOESM9_ESM.pdf (147 kb)
Supplementary material 9 (PDF 148 kb)
227_2011_1844_MOESM10_ESM.pdf (126 kb)
Supplementary material 10 (PDF 127 kb)
227_2011_1844_MOESM11_ESM.pdf (123 kb)
Supplementary material 11 (PDF 124 kb)
227_2011_1844_MOESM12_ESM.pdf (90 kb)
Supplementary material 12 (PDF 91 kb)
227_2011_1844_MOESM13_ESM.pdf (138 kb)
Supplementary material 13 (PDF 138 kb)
227_2011_1844_MOESM14_ESM.pdf (143 kb)
Supplementary material 14 (PDF 143 kb)
227_2011_1844_MOESM15_ESM.pdf (130 kb)
Supplementary material 15 (PDF 131 kb)
227_2011_1844_MOESM16_ESM.pdf (158 kb)
Supplementary material 16 (PDF 159 kb)
227_2011_1844_MOESM17_ESM.pdf (144 kb)
Supplementary material 17 (PDF 145 kb)
227_2011_1844_MOESM18_ESM.pdf (153 kb)
Supplementary material 18 (PDF 154 kb)

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410Google Scholar
  2. Andrade SCS, Norenburg JL, Solferini VN (2011) Worms without borders: genetic diversity patterns in four Brazilian Ototyphlonemertes species (Nemertea, Hoplonemertea). Mar Biol 158:2109–2124CrossRefGoogle Scholar
  3. Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55:539–552CrossRefGoogle Scholar
  4. Avise JC (2004) Molecular markers natural history and evolution. Sinauer, SunderlandGoogle Scholar
  5. Avise JC, Arnold J, Ball RM et al (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 18:489–522Google Scholar
  6. Ballard JW, Whitlock MC (2004) The incomplete natural history of mitochondria. Mol Ecol 13:729–744CrossRefGoogle Scholar
  7. Barton NH, Whitlock MC (1997) The evolution of metapopulations. In: Hanski IA, Gilpin ME (eds) Metapopulation biology: ecology, genetics, and evolution. Academic Press, San Diego, pp 183–210Google Scholar
  8. Baums IB, Miller MW, Hellberg ME (2005) Regionally isolated populations of an imperiled Caribbean coral, Acropora palmata. Mol Ecol 14:1377–1390CrossRefGoogle Scholar
  9. Bazin E, Glemin S, Galtier N (2006) Population size does not influence mitochondrial genetic diversity in animals. Science 312:570–576CrossRefGoogle Scholar
  10. Boeckner MJ, Sharma J, Proctor HC (2009) Revisiting the meiofauna paradox: dispersal and colonization of nematodes and other meiofaunal organisms in low-and high-energy environments. Hydrobiologia 624:91–106CrossRefGoogle Scholar
  11. Bohonak AJ (1999) Dispersal, gene flow, and population structure. Q Rev Biol 74:21–45CrossRefGoogle Scholar
  12. Castro-Longoria E, Alvarez-Borrego J, Rocha-Olivares A, Gomez S, Kober V (2003) Power of a multidisciplinary approach: use of morphological, molecular and digital methods in the study of harpacticoid cryptic species. Mar Ecol Prog Ser 249:297–303CrossRefGoogle Scholar
  13. Casu M, Curini-Galletti M (2004) Sibling species in interstitial flatworms: a case study using Monocelis lineata (Proseriata: Monocelididae). Mar Biol 145:669–679Google Scholar
  14. Casu M, Lai T, Sanna D, Cossu P, Curini Galletti M (2009) An integrative approach to the taxonomy of the pigmented European Pseudomonocelis Meixner, 1943 (Platyhelminthes: Proseriata). Biol J Linn Soc 98:907–922CrossRefGoogle Scholar
  15. Casu M, Sanna D, Cossu P, Lai T, Francalacci P, Curini Galletti M (2011) Molecular phylogeography of the microturbellarian Monocelis lineata (Platyhelminthes: Proseriata) in the North-East Atlantic. Biol J Linn Soc 103:117–135CrossRefGoogle Scholar
  16. Chernyshev AV (2000) Nemertean larvae of the Ototyphlonemertidae family in the plankton of Peter the Great Bay, Sea of Japan. Russ J Mar Biol 26:48–50CrossRefGoogle Scholar
  17. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659CrossRefGoogle Scholar
  18. Collin R (2001) The effects of mode of development on phylogeography and population structure of North Atlantic Crepidula (Gastropoda: Calyptraeidae). Mol Ecol 10:2249–2262CrossRefGoogle Scholar
  19. Corrêa DD (1950) Sôbre Ototyphlonemertes do Brasil. Bolm Fac Filos Ciênc Univ S Paulo (Zool) 15:203–234Google Scholar
  20. Corrêa DD (1953) Sôbre a locomoçao e a neurofisiologia de nemertinos. Bolm Fac Filos Ciênc Univ S Paulo (Zool) 18:129–147Google Scholar
  21. Corrêa DD (1961) Nemerteans from Florida and Virgin Islands. Bull Mar Sci 11:1–44Google Scholar
  22. Derycke S, Remerie T, Vierstraete A et al (2005) Mitochondrial DNA variation and cryptic speciation within the free-living marine nematode Pellioditis marina. Mar Ecol Prog Ser 300:91–103CrossRefGoogle Scholar
  23. Derycke S, Backeljau T, Vlaeminck C et al (2007) Spatiotemporal analysis of population genetic structure in Geomonhystera disjuncta (Nematoda, Monhysteridae) reveals high levels of molecular diversity. Mar Biol 151:1799–1812CrossRefGoogle Scholar
  24. Derycke S, Remerie T, Backeljau T et al (2008) Phylogeography of the Rhabditis (Pellioditis) marina species complex: evidence for long-distance dispersal, and for range expansions and restricted gene flow in the northeast Atlantic. Mol Ecol 17:3306–3322CrossRefGoogle Scholar
  25. Derycke S, De Ley P, Tandingan De Ley I, Holovachov O, Rigaux A, Moens T (2010) Linking DNA sequences to morphology: cryptic diversity and population genetic structure in the marine nematode Thoracostoma trachygaster (Nematoda, Leptosomatidae). Zool Scripta 39:276–289CrossRefGoogle Scholar
  26. Envall M, Norenburg JL (2001) Morphology and systematics in mesopsammic nemerteans of the genus Ototyphlonemertes (Nemertea, Hoplonemertea, Ototyphlonemertidae). Hydrobiologia 456:145–163CrossRefGoogle Scholar
  27. Envall M, Sundberg P (1998) Phylogenetic relationships and genetic distances between some monostiliferous interstitial nemerteans (Ototyphlonemertes, Hoplonemertea, Nemertea) indicated from the 16S rRNA gene. Zool J Linn Soc 123:105–115CrossRefGoogle Scholar
  28. Excoffier L (2004) Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Mol Ecol 13:853–864CrossRefGoogle Scholar
  29. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491Google Scholar
  30. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50Google Scholar
  31. Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578CrossRefGoogle Scholar
  32. Fortune PM, Schierenbeck K, Ayres D et al (2008) The enigmatic invasive Spartina densiflora: a history of hybridizations in a polyploidy context. Mol Ecol 17:4304–4316CrossRefGoogle Scholar
  33. Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709Google Scholar
  34. Giere O (2009) Meiobenthology: the microscopic motile fauna of aquatic sediments, 2nd edn. Springer Verlag, BerlinGoogle Scholar
  35. Gould SJ (1966) Allometry and size in ontogeny and phylogeny. Biol Rev 41:587–638CrossRefGoogle Scholar
  36. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704CrossRefGoogle Scholar
  37. Gyory J, Mariano AJ, Ryan EH (2005) The Caribbean Current. Ocean Surf Curr. http://oceancurrents.rsmas.miami.edu/caribbean/caribbean.html. Accessed 20 August 2006
  38. Hart MW, Sunday J (2007) Things fall apart: biological species form unconnected parsimony networks. Biol Lett 3:509–512CrossRefGoogle Scholar
  39. Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913CrossRefGoogle Scholar
  40. Higgins RP, Thiel H (1988) Introduction to the study of meiofauna. Smithsonian Institution Press, WashingtonGoogle Scholar
  41. Hudson RR (2000) A new statistic for detecting genetic differentiation. Genetics 155:2011–2014Google Scholar
  42. Hudson RR, Slatkin M, Maddison WP (1992) Estimation of levels of gene flow from DNA sequence data. Genetics 132:583–589Google Scholar
  43. Johannesson K (1988) The paradox of Rockall: why is a brooding gastropod (Littorina saxatilis) more widespread than one having a planktonic larval dispersal stage (L. littorea)? Mar Biol 99:507–513CrossRefGoogle Scholar
  44. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066CrossRefGoogle Scholar
  45. Kirsteuer E (1977) Remarks on taxonomy and geographic distribution of the genus Ototyphlonemertes Diesing (Nemertina, Monostilifera). Mikrofauna Meeresb 61:167–181Google Scholar
  46. Knowlton N (2000) Molecular genetic analyses of species boundaries in the sea. Hydrobiologia 420:73–90CrossRefGoogle Scholar
  47. Lavery S, Moritz C, Fielder DR (1996) Indo-Pacific population structure and evolutionary history of the coconut crab Birgus latro. Mol Ecol 5:557–570CrossRefGoogle Scholar
  48. Lessios HA, Kane J, Robertson DR (2003) Phylogeography of the pantropical sea urchin Tripneustes: contrasting patterns of population structure between oceans. Evolution 57:2026–2036Google Scholar
  49. Marjoram P, Donnelly P (1994) Pairwise comparisons of mitochondrial DNA sequences in subdivided populations and implications for early human evolution. Genetics 136:673–683Google Scholar
  50. Maynard Smith J, Haigh J (1974) The hitch-hiking effect of a favourable gene. Genet Res 23:23–35CrossRefGoogle Scholar
  51. McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654CrossRefGoogle Scholar
  52. McNair JN, Newbold JD, Hart DD (1997) Turbulent transport of suspended particles and dispersing benthic organisms: how long to hit bottom? J Theor Biol 188:29–52CrossRefGoogle Scholar
  53. Mock H (1981) Beobachtungen an einem Nemertinen-(Schnurwurm-)Eigelege. Mikrokosmos 4:102–104Google Scholar
  54. Mock H, Schmidt P (1975) Interstitielle Fauna von Galapagos XIII. Ototyphlonemertes Diesing (Nemertini, Hoplonemertini). Mikrofauna Meeresb 51:1–40Google Scholar
  55. Norenburg JL (1988) Nemertina. In: Higgins RP, Thiel H (eds) Introduction to the Study of Meiofauna. Smithsonian Institution Press, Washington, pp 287–292Google Scholar
  56. Norenburg JL (2009) Nemertea of the Gulf of Mexico. In: Felder DL, Camp DK (eds) Gulf of Mexico Origin, Waters, and Biota Volume 1, Biodiversity. Texas A and M University Press, College Station, pp 553–558Google Scholar
  57. Norenburg JL, Stricker SA (2002) Chapter 7–Phylum Nemertea. In: Young CM (ed) Atlas of Marine Invertebrate Larvae. Academic Press, San Diego, pp 163–177Google Scholar
  58. Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, UppsalaGoogle Scholar
  59. Palmer MA (1988) Dispersal of marine meiofauna: a review and conceptual model explaining passive transport and active emergence with implications for recruitment. Mar Ecol Prog Ser 48:81–91CrossRefGoogle Scholar
  60. Paulay G, Meyer C (2002) Diversification in the tropical Pacific: comparisons between marine and terrestrial systems and the importance of founder speciation. Integr Comp Biol 42:922–934CrossRefGoogle Scholar
  61. Peakall ROD, Smouse PE (2006) GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  62. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818CrossRefGoogle Scholar
  63. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959Google Scholar
  64. Ray N, Currat M, Excoffier L (2003) Intra-deme molecular diversity in spatially expanding populations. Mol Biol Evol 20:76–86CrossRefGoogle Scholar
  65. Reeb CA, Avise JC (1990) A genetic discontinuity in a continuously distributed species: mitochondrial DNA in the American oyster, Crassostrea virginica. Genetics 124:397–406Google Scholar
  66. Rocha-Olivares A, Fleeger JW, Foltz DW (2001) Decoupling of molecular and morphological evolution in deep lineages of a meiobenthic harpacticoid copepod. Mol Biol Evol 18:1088–1102CrossRefGoogle Scholar
  67. Rogers AD, Thorpe JP, Gibson R, Norenburg JL (1998) Genetic differentiation of populations of the common intertidal nemerteans Lineus ruber and Lineus viridis (Nemertea, Anopla). Hydrobiologia 365:1–11CrossRefGoogle Scholar
  68. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138CrossRefGoogle Scholar
  69. Rowe E, Mariano AJ, Ryan EH (2005) The Antilles Current. Ocean Surf Curr. http://oceancurrents.rsmas.miami.edu/atlantic/antilles.html. Accessed August 2006
  70. Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497CrossRefGoogle Scholar
  71. Schizas NV, Street GT, Coull BC, Chandler GT, Quattro JM (1999) Molecular population structure of the marine benthic copepod Microarthridion littorale along the southeastern and Gulf coasts of the USA. Mar Biol 135:399–405CrossRefGoogle Scholar
  72. Schizas N, Coull B, Chandler G, Quattro J (2002) Sympatry of distinct mitochondrial DNA lineages in a copepod inhabiting estuarine creeks in the southeastern USA. Mar Biol 140:585–594CrossRefGoogle Scholar
  73. Schlüter PM, Harris SA (2006) Analysis of multilocus fingerprinting data sets containing missing data. Mol Ecol Notes 6:569–572CrossRefGoogle Scholar
  74. Simonsen KL, Churchill GA, Aquadro CF (1995) Properties of statistical tests of neutrality for DNA polymorphism data. Genetics 141:413–429Google Scholar
  75. Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47:264–279CrossRefGoogle Scholar
  76. Slatkin M, Hudson RR (1991) Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129:555–562Google Scholar
  77. Sponer R, Roy MS (2002) Phylogeographic analysis of the brooding brittle star Amphipholis squamata (Echinodermata) along the coast of New Zealand reveals high cryptic genetic variation and cryptic dispersal potential. Evolution 56:1954–1967Google Scholar
  78. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595Google Scholar
  79. Teague WJ, Jarosz E, Keen TR, Wang DW, Hulbert MS (2006) Bottom scour observed under Hurricane Ivan. Geophys Res Lett 33:L07607CrossRefGoogle Scholar
  80. Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132:619–633Google Scholar
  81. Thiel M, Gutow L (2005) The ecology of rafting in the marine environment. II. The rafting organisms and community. Oceanogr Mar Biol Annu Rev 43:279–418CrossRefGoogle Scholar
  82. Todaro MA, Fleeger JW, Hu YP, Hrincevich AW, Foltz DW (1996) Are meiofaunal species cosmopolitan? Morphological and molecular analysis of Xenotrichula intermedia (Gastrotricha: Chaetonotida). Mar Biol 125:735–742CrossRefGoogle Scholar
  83. Tulchinsky A (2006) Phylogeography of marine meiofaunal nemerteans of the Ototyphlonemertes fila species complex. Master thesis, Virginia Commonwealth UniversityGoogle Scholar
  84. von Soosten C, Schmidt H, Westheide W (1998) Genetic variability and relationships among geographically widely separated populations of Petitia amphophthalma (Polychaeta: Syllidae). Results from RAPD-PCR investigations. Mar Biol 131:659–669CrossRefGoogle Scholar
  85. Wade MJ, McCauley DE (1988) Extinction and recolonization: their effects on the genetic differentiation of local populations. Evolution 42:995–1005CrossRefGoogle Scholar
  86. Waters JM, King TM, O’Loughlin PM, Spencer HG (2005) Phylogeographical disjunction in abundant high-dispersal littoral gastropods. Mol Ecol 14:2789–2802CrossRefGoogle Scholar
  87. Westheide W, Haß-Cordes E, Krabusch M, Müller M (2003) Ctenodrilus serratus (Polychaeta: Ctenodrilidae) is a truly amphi-Atlantic meiofauna species—evidence from molecular data. Mar Biol 142:637–642Google Scholar
  88. Wolfe AD, Xiang Q, Kephart SR (1998) Assessing hybridization in natural populations of Penstemon (Scrophulariaceae) using hypervariable intersimple sequence repeat (ISSR) bands. Mol Ecol 7:1107–1125CrossRefGoogle Scholar
  89. Wren PA, Leonard LA (2005) Sediment transport on the mid-continental shelf in Onslow Bay, North Carolina during Hurricane Isabel. Estuar Coast Shelf Sci 63:43–56CrossRefGoogle Scholar
  90. Xia X, Xie Z (2001) DAMBE: software package for data analysis in molecular biology and evolution. J Hered 92:371–373CrossRefGoogle Scholar
  91. Young A, Torres C, Mack J, Cunningham C (2002) Morphological and genetic evidence for vicariance and refugium in Atlantic and Gulf of Mexico populations of the hermit crab Pagurus longicarpus. Mar Biol 140:1059–1066CrossRefGoogle Scholar
  92. Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Alexander Y. Tulchinsky
    • 1
  • Jon L. Norenburg
    • 2
  • James M. Turbeville
    • 3
  1. 1.Graduate Program in Organismic and Evolutionary BiologyUniversity of Massachusetts AmherstAmherstUSA
  2. 2.National Museum of Natural HistorySmithsonian InstitutionWashingtonUSA
  3. 3.Department of BiologyVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations