Marine Biology

, Volume 158, Issue 12, pp 2795–2804 | Cite as

Prey selection in Octopus rubescens: possible roles of energy budgeting and prey nutritional composition

Original Paper

Abstract

This study explores the relationship between energy budgeting and prey choice of Octopus rubescens. Seventeen male Octopus rubescens were collected between June 2006 and August 2007 from Admiralty Bay, Washington. Prey choices made by individuals in the laboratory deviated widely from those expected from a simple optimal foraging model. O. rubescens chose the crab Hemigrapsus nudus over the clam Nuttallia obscurata as prey by a ratio of 3:1, even though prey energy content and handling times suggested that this octopus could obtain 10 times more energy intake per unit time when choosing the latter compared to the former prey species. Octopus energy budgets were similar when consuming either of the prey species except for lipid extraction efficiency that was significantly higher in octopuses consuming H. nudus. This suggests that lipid digestibility may play an important role in the prey choice of O. rubescens.

References

  1. Ainley DG, Spear LB, Allen SG, Ribic CA (1996) Temporal and spatial patterns in the diet of the common murre in California waters. Condor 98:691–705CrossRefGoogle Scholar
  2. Ambrose RF (1984) Food preferences, prey availability, and the diet of Octopus bimaculatus Verrill. J Exp Mar Biol Ecol 77:29–44CrossRefGoogle Scholar
  3. Anderson RC (1991) The fish-catching ability of Octopus dofleini. J Cephalop Biol 2:75–76Google Scholar
  4. Anderson RC, Mather JA (2007) The packaging problem: bivalve prey selection and prey entry techniques of the octopus Enteroctopus dofleini. J Comp Psychol 121:300–305. doi:10.1037/0735-7036.121.3.300 CrossRefGoogle Scholar
  5. Anderson RC, Hughes PD, Mather JA, Steele CW (1999) Determination of the diet of Octopus rubescens through examination of its beer bottle dens in Puget Sound. Malacologia 41:455–460Google Scholar
  6. Anderson RC, Wood JB, Mather JA (2008) Octopus vulgaris in the Caribbean is a specializing generalist. Mar Ecol Prog Ser 371:199–202. doi:10.3354/meps07674 CrossRefGoogle Scholar
  7. Boucher-Rodoni R, Mangold K (1977) Experimental study of digestion in Octopus vulgaris. J Zool 183:505–515CrossRefGoogle Scholar
  8. Boucher-Rodoni R, Mangold K (1985) Ammonia excretion during feeding and starvation in Octopus vulgaris. Mar Biol 86:193–197CrossRefGoogle Scholar
  9. Boucher-Rodoni R, Mangold K (1988) Comparative aspects of ammonia excretion in cephalopods. Malacologia 29:145–151Google Scholar
  10. Curio E (1976) The ethology of predation. Springer-Verlag, New YorkGoogle Scholar
  11. Daly HI, Peck LS (2000) Energy balance and cold adaptation in the octopus Pareledone charcoti. J Exp Mar Biol Ecol 245:197–214CrossRefGoogle Scholar
  12. Dodge R, Scheel D (1999) Remains of the prey—Recognizing the midden piles of Octopus dofleini (Wulker). Veliger 42:260–266Google Scholar
  13. Farías A, Uriarte I, Hernández J, Pino S, Pascual C, Caamal C, Domíngues P, Rosas C (2009) How size related to oxygen consumption, ammonia excretion, and ingestion rates in cold (Enteroctopus megalocyathus) and tropical (Octopus maya) octopus species. Mar Biol 156:1547–1557. doi:10.1007/s00227-009-1191-4 CrossRefGoogle Scholar
  14. Garcia Garcia B, Cerezo Valverde J (2006) Optimal proportions of crabs and fish in diet for common octopus (Octopus vulgaris) ongrowing. Aquaculture 253:502–511. doi:10.1016/j.aquaculture.2005.04.055 CrossRefGoogle Scholar
  15. Grasshoff K, Kremling K (1999) Methods of seawater analysis. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  16. Hanlon RT, Messenger JB (1996) Cephalopod behavior. Cambridge University Press, CambridgeGoogle Scholar
  17. Hochberg FG (1998) Octopus rubescens. In: Scott PV, Blake JA (eds) Taxonomic atlas of the benthic fauna of the Santa Maria Basin and the western Santa Barbara Channel. Santa Barbara Museum of Natural History, Santa Barbara, pp 213–218Google Scholar
  18. Hunt SL, Mulligan TJ, Komori K (1999) Oceanic feeding habits of Chinook salmon, Oncorhynchus tshawytscha, off northern California. Fish Bull 97:717–721Google Scholar
  19. Katsanevakis S, Stephanopaulou S, Miliou H, Moraitou-Apolstolopoulou M, Verriopoulos G (2005) Oxygen consumption and ammonia excretion of Octopus vulgaris (Cephalopoda) in relation to body mass and temperature. Mar Biol 146:725–732. doi:10.1007/s00227-004-1473-9 Google Scholar
  20. Lee PG (1994) Nutrition of cephalopods: fueling the system. In: Pörtner HO, O’Dor RK, Macmillan DL (eds) Physiology of cephalopod molluscs. Gordon and Breach Publishers, Basel, pp 35–51Google Scholar
  21. Lucas A (1996) Bioenergetics of aquatic animals. Taylor and Francis Inc., LondonGoogle Scholar
  22. Mather JA, O’Dor RK (1991) Foraging strategies and predation risk shape the natural history of juvenile Octopus vulgaris. Bull Mar Sci 49:256–269Google Scholar
  23. Mayntz D, Raubenheimer D, Salomon M, Toft S, Simpson SJ (2005) Nutrient-specific foraging in invertebrate predators. Science 307:111–113. doi:10.1126/science.1105493 CrossRefGoogle Scholar
  24. Mayzaud P, Conover RJ (1988) O:N atomic ratio as a tool to describe zooplankton metabolism. Mar Ecol Prog Ser 45:289–302CrossRefGoogle Scholar
  25. McCullouch BD (2004) Fixing statistical errors in spreadsheet software: the cases of Gnumeric and Excel. In: Computational statistics and data analysis statistical software newsletter. http://www.csdassn.org/software_reports/gnumeric.pdf. Accessed 2 Jan 2009
  26. Murdoch WW (1969) Switching in general predators: experiments on predator specificity and stability of prey populations. Ecol Monogr 39:335–354CrossRefGoogle Scholar
  27. Navarro JC, Villanueva R (2003) The fatty acid composition of Octopus vulgaris paralarvae reared with live and inert food: deviation from their natural fatty acid profile. Aquaculture 219:613–631. doi:10.1016/S0044-8486(02)00311-3 CrossRefGoogle Scholar
  28. O’Dor RK, Wells MJ (1987) Energy and nutrient flow. In: Boyle PR (ed) Cephalopod life cycles. Academic Press, New York, pp 109–134Google Scholar
  29. O’Dor RK, Mangold K, Boucher-Rodoni R, Wells MJ, Wells J (1984) Nutrient absorption, storage and remobilization in Octopus vulgaris. Mar Behav Physiol 11:239–258CrossRefGoogle Scholar
  30. Oxman DS (1995) Seasonal abundance, movements, and food habits of harbor seals (Phoca vitulina richardsi) in Elkhorn Slough, California. Master thesis, California State University, StanislausGoogle Scholar
  31. Perez MC, Lopez DA, Aguila K, Gonzalez ML (2006) Feeding and growth in captivity of the octopus Enteroctopus megalocyathus Gould, 1852. Aquacult Res 37:550–555. doi:10.1111/j.1365-2109.2006.01454.x CrossRefGoogle Scholar
  32. Petza D, Katsanevakis S, Verriopoulos G (2006) Experimental evaluation of the energy balance in Octopus vulgaris, fed ad libitum on a high-lipid diet. Mar Biol 148:827–832. doi:10.1007/s00227-005-0129-8 CrossRefGoogle Scholar
  33. R Development Core Team (2008) R: a language and environment for statistical computing. R foundation for statistical computing. http://cran.r-project.org/doc/manuals/fullrefman.pdf. Accessed 15 July 2009
  34. Rigby P, Sakurai Y (2004) Temperature and feeding related growth efficiency of immature octopuses Enteroctopus dofleini. Suisan Zoshoku 52:29–36Google Scholar
  35. Roa R (1992) Design and analysis of multiple-choice feeding-preference experiments. Oecologia 89:509–515Google Scholar
  36. Rosas C, Cuzon G, Pascual C, Gaxiola G, Chay D, López N, Maldonado T, Domingues PM (2007) Energy balance of Octopus maya fed crab or an artificial diet. Mar Biol 152:371–381. doi:10.1007/s00227-007-0692-2 CrossRefGoogle Scholar
  37. Scheel D, Lauster A, Vincent TLS (2007) Habitat ecology of Enteroctopus dolfleini from middens and live prey surveys in Prince William Sound, Alaska. In: Landman NH, Davis RA, Mapes RH (eds) Cephalopods past and present: new insights and fresh perspectives. Springer, Dordrech, pp 434–458CrossRefGoogle Scholar
  38. Seibel BA, Drazen JC (2007) The rates of metabolism in marine animals: environmental constraints, ecological demands and energetic opportunities. Philos Trans R Soc London Ser B 362:2061–2078. doi:10.1098/rstb.2007.2101 CrossRefGoogle Scholar
  39. Semmens JM, Pecl G, Villanueva R, Jouffre D, Sobrino I, Wood JB, Rigby P (2004) Understanding octopus growth: patterns, variability and physiology. Mar Freshw Res 55:367–377. doi:10.1071/MF03155 CrossRefGoogle Scholar
  40. Shipley LA, Forbey JS, Moore BD (2009) Revisiting the dietary niche: when is a mammalian herbivore a specialist? Integr Comp Biol 49:274–290. doi:10.1093/icb/icp051 CrossRefGoogle Scholar
  41. Simpson SJ, Sibly RM, Lee KP, Behmer ST, Raubenheimer D (2004) Optimal foraging when regulating intake of multiple nutrients. Anim Behav 68:1299–1311. doi:10.1016/j.anbehav.2004.03.003 CrossRefGoogle Scholar
  42. USDA (2008) USDA National Nutrient Database for Standard Reference. http://www.nal.usda.gov/fnic/foodcomp/search/. Accessed 2 Jan 2009
  43. van Baalen M, Krivan V, van Rijn PCJ, Sabelis MW (2001) Alternative food, switching predators, and the persistence of predator-prey systems. Am Nat 157:512–524. doi:10.1086/319933 CrossRefGoogle Scholar
  44. Van Heukelem WF (1976) Growth, bioenergetics and life-span of Octopus cyanea and Octopus maya. Dissertation, University of HawaiiGoogle Scholar
  45. Vincent TLS, Scheel D, Hough KR (1998) Some aspects of diet and foraging behavior of Octopus dofleini (Wulker, 1910) in its northernmost range. Mar Ecol 19:13–29CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.School of Biological SciencesWashington State UniversityPullmanUSA
  2. 2.Department of Biological SciencesWalla Walla UniversityCollege PlaceUSA

Personalised recommendations