Advertisement

Marine Biology

, Volume 158, Issue 11, pp 2419–2428 | Cite as

Hydrolithon spp. (Rhodophyta, Corallinales) overgrow live corals (Cnidaria, Scleractinia) in Yemen

  • Francesca Benzoni
  • Daniela Basso
  • Annalisa Caragnano
  • Graziella Rodondi
Original Paper

Abstract

In Yemen, off the northwestern coast in the Gulf of Aden, the coralline algae Hydrolithon rupestre (Foslie) Penrose 1996 and H.murakoshii Iryu and Matsuda 1996 have been observed to overgrow and kill living Porites lutea Milne-Edwards and Haime, 1860. Similarly, Hydrolithononkodes (Heydrich) Penrose and Woelkerling 1992 and H. rupestre were observed overgrowing Stylophora pistillata (Esper, 1797). Competitive interactions between P. lutea and H.murakoshii were monitored from 2006 to 2009 at two sites and showed an average linear growth of 8.3 (±1.9 SD) mm year−1 over the coral. The small polyps of S. pistillata and P. lutea combined with putative chemical compounds produced by Hydrolithon spp. are likely to allow the coralline overgrowth. Although corallines can locally kill coral tissues, the CCA/coral interactions do not seem to affect the overall live coral cover at the study sites.

Keywords

Coral Tissue Scleractinian Coral Coral Community Crustose Coralline Alga Pore Canal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors are grateful to Robert Hirst and Yemen LNG, Claude Chaineu and Total E&P, for allowing fieldwork and sampling, and to Eric Dutrieux and Creocean for logistic and organization support. We thank S. Basheen (Professional Divers Yemen) help in different parts of the field work. We are very grateful to the Editor and to three anonymous reviewers for their constructive criticism and their help to improve the manuscript and to Jane Hayward Cantarelli for English editing. We wish to thank M. Pichon for fruitful discussion and Paolo Gentile for his help with specimen preparation and SEM imaging.

References

  1. Adey WH (1998) Coral reefs: algal structured and mediated ecosystems in shallow, turbulent, alkaline waters. J Phycol 34:393–406CrossRefGoogle Scholar
  2. Adey WH, Vassar JM (1975) Colonization, succession and growth rates of tropical crustose coralline algae (Rhodophyta, Cryptonemiales). Phycologia 14:55–69CrossRefGoogle Scholar
  3. Aeby G (1993) Corals in the genus Porites are susceptible to infection by a larval trematode. Coral Reefs 22:216CrossRefGoogle Scholar
  4. Antonius A (2001) Pneophyllum conicum, a coralline red alga causing reef-death in Mauritius. Coral Reefs 19:418CrossRefGoogle Scholar
  5. Ballantine DL, Ruiz H (2011) Metapeyssonnelia milleporoides, a new species of coral-killing red alga (Peyssonneliaceae) from Puerto Rico, Caribbean Sea. Bot Mar 54:47–51Google Scholar
  6. Benzoni F, Bianchi CN, Morri C (2003) Coral communities of the North-western Gulf of Aden (Yemen): variation in framework building related to environmental factors and biotic conditions. Coral Reefs 22:475–484CrossRefGoogle Scholar
  7. Benzoni F, Pichon M, Galli P (2010) Pink spots on Porites: not always a coral disease. Coral Reefs 29:153CrossRefGoogle Scholar
  8. Birrel CL, McCook LJ, Willis BL, Harrington L (2008) Chemical effects of macroalgae on larval settlement of the broadcast spawning coral Acropora millepora. Mar Ecol Prog Ser 362:129–137CrossRefGoogle Scholar
  9. Bishop CD, Huggett MJ, Heyland A, Hodin J, Brandhorst BP (2006) Interspecific variation in metamorphic competence in marine invertebrates: the significance for comparative investigations into the timing of metamorphosis. Integr Comp Biol 46:662–682CrossRefGoogle Scholar
  10. Bjork M, Mohammed S, Bjorkland M, Semesi A (1995) Coralline algae, important coral reef builders threatened by pollution. Ambio 24:502–505Google Scholar
  11. Bongiorni L, Rinkevich B (2005) The pink-blue spot syndrome in Acropora eurystoma (Eilat, Red Sea): a possible marker of stress? Zoology 108:247–256CrossRefGoogle Scholar
  12. Bressan G (1974) Rodoficee calcaree dei mari italiani. Boll Soc Adr Sc 59:1–132Google Scholar
  13. Buenau KE, Price NN, Nisbet RM (2010) Local interactions drive size dependent space competition between coral and crustose coralline algae. Oikos 120:941–949CrossRefGoogle Scholar
  14. Bulleri F (2006) Duration of overgrowth affects survival of encrusting coralline algae. Mar Ecol Prog Ser 321:79–85CrossRefGoogle Scholar
  15. Caragnano A, Colombo F, Rodondi G, Basso D (2009) 3-D distribution of nongeniculate Corallinales: a case study from a reef crest of South Sinai (Red Sea, Egypt). Coral Reefs 28:881–891CrossRefGoogle Scholar
  16. Chisholm JRM (2003) Primary productivity of reef-building crustose coralline algae. Limnol Oceanogr 48:1376–1387CrossRefGoogle Scholar
  17. Coles S (1996) Corals of Oman. CYK Publications, MuscatGoogle Scholar
  18. Cribb AG (1983) Marine algae of the southern Great Barrier Reef. Part I. Rhodophyta. ACRS, BrisbaneGoogle Scholar
  19. Diaz-Pulido G, McCook LJ (2004) Effects of live coral, epilithic algal communities and substrate type on algal recruitment. Coral Reefs 23:225–233CrossRefGoogle Scholar
  20. Diaz-Pulido G, McCook LJ, Dove S, Berkelmans RWC, Roff G, Kline DI, Weeks S, Evans RD, Williamson DH, Hoegh-Guldberg O (2009) Doom and boom on a resilient reef: climate change, algal overgrowth and coral recovery. PLoS ONE 4:e5239CrossRefGoogle Scholar
  21. Eckrich CE, Engel MS, Peachey RBJ (2010) Crustose, calcareous algal bloom (Ramicrusta sp.) overgrowing scleractinian corals, gorgonians, a hydrocoral, sponges, and other algae in Lac Bay, Bonaire, Dutch Caribbean. Coral Reefs 30:131CrossRefGoogle Scholar
  22. Esper EJC (1797) Fortsetzungen der Pflanzenthiere in Abbildungennach der Natur mit Farben erleuchtet nebst Beschreibungen. Erster Theil, Nürnberg, pp 1–230Google Scholar
  23. Fagerström JA (1991) Reef-building guilds and a checklist for determining guild membership. A new approach for study of communities. Coral Reefs 10:47–52CrossRefGoogle Scholar
  24. Finckh AE (1904) Report on dredging at Funafuti. Section VI. Biology of the reef-forming organisms at Funafuti Atoll. Rep Coral Reef Comm R Soc 125:150Google Scholar
  25. Gattuso J-P (1985) Features of depth effects on Stylophora pistillata, an hermatypic coral in the Gulf of Aqaba (Jordan, Red Sea). In: Proceedings of 5th international coral reef congress Tahiti, vol 6, pp 95–100Google Scholar
  26. Glynn PW (1993) Monsoonal upwelling and episodic Acanthaster predation as probable controls of coral reef distribution and community structure in Oman, Indian Ocean. Atoll Res Bull 379:1–66CrossRefGoogle Scholar
  27. Golbuu Y, Richmond RH (2007) Substratum preferences in planula larvae of two species of scleractinian corals, Goniastrea retiformis and Stylaraea punctata. Mar Biol 152:639–644CrossRefGoogle Scholar
  28. Harrington L, Fabricius K, De’Ath G, Negri A (2004) Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecology 85:3428–3437CrossRefGoogle Scholar
  29. Heyward AJ, Negri AP (1999) Natural inducers for coral larval metamorphosis. Coral Reefs 18:273–279CrossRefGoogle Scholar
  30. Hixon MA (1997) The effects of reef fishes on corals and algae. In: Birkeland C (ed) Life and death of coral reefs. Chapman and Hall, New York, pp 230–248CrossRefGoogle Scholar
  31. Iryu Y, Matsuda S (1996) Hydrolithon murakoshii sp. nov. (Corallinaceae, Rhodophyta) from Ishigaki-jima, Ryukyu Islands, Japan. Phycologia 35:528–536CrossRefGoogle Scholar
  32. Keats DW, Chamberlain YM, Baba M (1997a) Pneophyllum conicum (Dawson) comb. nov. (Rhodophyta, Corallinaceae), a widespread Indo-Pacific non-geniculate coralline alga that overgrows and kills live coral. Bot Mar 40:263–279CrossRefGoogle Scholar
  33. Keats DW, Knight MA, Pueschel CM (1997b) Antifouling effects of epithallial shedding in three crustose coralline algae (Rhodophyta, Corallinales) on a coral reef. J Exp Mar Biol Ecol 213:281–293CrossRefGoogle Scholar
  34. Kemp JM, Benzoni F (1999) Monospecific coral areas on the northern shore of the Gulf of Aden, Yemen. Coral Reefs 18:180CrossRefGoogle Scholar
  35. Kemp JM, Benzoni F (2000) A preliminary study of coral communities in the northern Gulf of Aden. Fauna Arabia 18:67–86Google Scholar
  36. Kiessling W, Flugel E, Golonka J (2002) Phanerozoic reef patterns. SEPM SPECIAL Publications, TulsaCrossRefGoogle Scholar
  37. Kikuchi RKP, Leão ZMAN (1997) Rocas (Southwestern Equatorial Atlantic, Brazil): an atoll built primarily by coralline algae. In: Proceedings of 8th international coral reef symposium, vol 1, pp 731–736Google Scholar
  38. Littler DS, Littler MM (1999) Epithallus sloughing: a self-cleaning mechanism for coralline algae. Coral Reefs 18:204CrossRefGoogle Scholar
  39. Littler DS, Littler MM (2003) South Pacific reef plants: a divers’ guide to the plant life of South Pacific coral reefs. Offshore Graphics Inc., Washington, D.CGoogle Scholar
  40. Macintyre IG (1997) Reevaluating the role of crustose coralline algae in the construction of coral reefs. In: Proceedings of 8th international coral reef symposium, vol 1, pp 725–730Google Scholar
  41. Maneveldt GW (2005) A global revision of the nongeniculate coralline algal genera Porolithon Foslie (defunct) and Hydrolithon Foslie (Corallinales Rhodophyta). Ph.D. Thesis. Dept. Biodiversity and Conservation Biology, University of the Western CapeGoogle Scholar
  42. McCook LJ, Jompa J, Diaz-Pulido G (2001) Competition between corals and algae on coral reefs: a review of evidence and mechanisms. Coral Reefs 19:400–417CrossRefGoogle Scholar
  43. Milliman JD (1974) Marine carbonates. In: Milliman JD, Müller G, Förstner U (eds) Recent sedimentary carbonates, part I. Springer, BerlinCrossRefGoogle Scholar
  44. Milne-Edwards H, Haime J (1860) Histoire naturelle des coralliaires ou polypes proprement dits. 3:1–560Google Scholar
  45. Morse ANC, Iwao K, Baba M, Shimoike K, Hayashibara T, Omori M (1996) An ancient chemosensory mechanism brings new life to coral reefs. Biol Bull 191:149–154CrossRefGoogle Scholar
  46. Nugues MM, Smith GW, Hooidonk RJV, Seabra MI, Bak RPM (2004a) Algal contact as a trigger for coral disease. Ecol Lett 7:919–923CrossRefGoogle Scholar
  47. Nugues MM, Delvoye L, Bak RPM (2004b) Coral defense against macroalgae: differential effects of mesenterial filaments on the green alga Halimeda opuntia. Mar Ecol Prog Ser 278:103–114CrossRefGoogle Scholar
  48. O’Brien TP, McCully ME (1981) The study of plant structure. Principles and selected methods. Termarcarphi Pty Ltd, MelbourneGoogle Scholar
  49. Palmer CV, Roth MS, Gates RD (2009) Red fluorescent protein responsible for pigmentation in trematode-infected Porites compressa tissues. Biol Bull 216:68–74CrossRefGoogle Scholar
  50. Payri CE (1995) Production carbonatée de quelques algues calcifiées sur un récif corallien de Polynésie française. B Soc Géol Fr 166:77–84Google Scholar
  51. Penrose D (1996) Genus Hydrolithon (Foslie) Foslie 1909: 55. In: Womersley HBS (ed) The marine benthic flora of southern Australia. Rhodophyta. Part IIIB, Gracilariales, Rhodymeniales, Corallinales and Bonnemaisoniales. Australian Biological Resources Study, Canberra, pp 255–266Google Scholar
  52. Penrose D, Woelkerling WJ (1992) A reappraisal of Hydrolithon and its relationship to Spongites (Corallinaceae, Rhodophyta). Phycologia 31:81–88CrossRefGoogle Scholar
  53. Pichon M, Benzoni F, Chaineau CH, Dutrieux E (2010) Field guide of the hard corals of the southern coast of Yemen. Biotope, ParisGoogle Scholar
  54. Pitlik TJ, Paul VJ (1997) Effects of toughness, calcite level, and chemistry of crustose coralline algae (Rhodophyta, Corallinales) on grazing by the parrotfish Chlorurus sordidus. In: Proceedings of 8th international coral reef symposium vol 1, 701–706Google Scholar
  55. Price N (2010) Habitat selection, facilitation, and biotic settlement cues affect distribution and performance of coral recruits in French Polynesia. Oecologia 163:747–758CrossRefGoogle Scholar
  56. Pueschel C, Saunders G (2009) Ramicrusta textilis sp. nov. (Peyssonneliaceae, Rhodophyta), an anatomically complex Caribbean alga that overgrows corals. Phycologia 48:480–491CrossRefGoogle Scholar
  57. Ranson G (1955a) Observations sur l’agent essentiel de la dissolution du calcaire sousmarin dans la zone côtière des îles coralliennes de l’archipel des Tuamotu. C r hebd Seanc Acad Sci Paris 240:806–808Google Scholar
  58. Ranson G (1955b) Observations sur l’agent essentiel de la dissolution du calcaire dans les regions exondées des îles coralliennes de l’archipel des Tuamotu. C r hebd Seanc Acad Sci Paris 240:1007–1009Google Scholar
  59. Ravindran J, Raghukumar C (2006) Pink-line syndrome, a physiological crisis in the scleractinian coral Porites lutea. Mar Biol 149:347–356CrossRefGoogle Scholar
  60. Riegl B, Piller WE (2000) Reefs and coral carpets in the northern Red Sea as models for organism–environment feedback in coral communities and its reflection in growth fabric. In: Insalaco E, Skelton PW, Palmer TJ (eds) Carbonate platforms systems: components and interactions. Geol Soc Lond Spec Publ, vol 178, pp 71–88Google Scholar
  61. Sheppard C, Price A, Roberts C (1992) Marine ecology of the Arabian region. Patterns and processes in extreme tropical environments. Academic Press, LondonGoogle Scholar
  62. Sorokin YI (1993) Coral reef ecology. Springer, HeidelbergCrossRefGoogle Scholar
  63. Stefani F, Benzoni F, Yang S-Y, Pichon M, Galli P, Chen CA (2011) Comparison of morphological and genetic analyses reveal cryptic divergence and morphological plasticity in Stylophora (Cnidaria, Scleractinia). Coral Reefs (in press)Google Scholar
  64. Steneck RS (1997) Crustose corallines, other algal functional groups, herbivores and sediments: complex interactions along reef productivity gradients. In: Proc 8th Int Coral Reef Symp 1:695–700Google Scholar
  65. Steneck RS, Testa V (1997) Are calcareous algae important to reefs today or in the past? Symposium summary. In: Proceedings of 8th International coral reef symposium, vol 1, pp 685–688Google Scholar
  66. van den Hoek C (1969) Algal vegetation-types along the open coasts of Curaçao, Netherlands Antilles I and II. Proc K ned Akad Wet 72:537–577Google Scholar
  67. van Woesik R (1998) Lesion healing on massive Porites spp. corals. Mar Ecol Prog Ser 164:213–222CrossRefGoogle Scholar
  68. Verlaque M, Ballesteros E, Antonius A (2000) Metapeyssonnelia corallepida sp. nov. (Peyssonneliaceae, Rhodophyta), an Atlantic encrusting red alga overgrowing corals. Bot Mar 43:191–200Google Scholar
  69. Vermeij MJA, Sandin SA (2008) Density-dependent settlement and mortality structure the earliest life phases of a coral population. Ecology 89:1994–2004CrossRefGoogle Scholar
  70. Veron JEN, Pichon M (1976) Scleractinia of Eastern Australia. vol 1: Part I. Families Thamnasteriidae, Astrocoeniidae, Pocilloporidae. Australian Institute of Marine Science Monograph Series, Australian Institute of Marine Science, TownsvilleGoogle Scholar
  71. Veron JEN, Pichon M (1982) Scleractinia of Eastern Australia. vol 5: Part IV. Families Thamnasteriidae, Astrocoeniidae, Pocilloporidae. Australian Institute of Marine Science Monograph Series, Australian Institute of Marine Science, TownsvilleGoogle Scholar
  72. Wilcox D, Dove B, McDavid D, Greer D (1986–2001) UTHSCSA image tool for windows. San Antonio: University of Texas Health Science Centre, http://www.ddsdx.uthscsa.edu/dig/itdesc.html. Accessed 8 February 2011
  73. Williams EA, Craigie A, Yeates A, Degnan SM (2008) Articulated coralline algae of the genus Amphiroa are highly effective natural inducers of settlement in the tropical abalone Haliotis asinina. Biol Bull 215:98–107CrossRefGoogle Scholar
  74. Willis B, Page C, Dinsdale E (2004) Coral disease on the Great Barrier Reef. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, Berlin, pp 69–104CrossRefGoogle Scholar
  75. Wood R (1999) Reef evolution. Oxford University Press, NewYorkGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Francesca Benzoni
    • 1
    • 2
  • Daniela Basso
    • 3
  • Annalisa Caragnano
    • 3
  • Graziella Rodondi
    • 4
  1. 1.Dipartimento di Biotecnologie e BioscienzeUniversità degli Studi di Milano-BicoccaMilanItaly
  2. 2.Institut de Recherche pour le DéveloppementUMR227 Coreus2Nouméa Cedex, New CaledoniaFrance
  3. 3.Dipartimento di Scienze Geologiche e GeotecnologieUniversità degli Studi di Milano-BicoccaMilanItaly
  4. 4.Dipartimento di Biologia, Sezione di Botanica SistematicaUniversità degli Studi di MilanoMilanItaly

Personalised recommendations