Advertisement

Marine Biology

, Volume 158, Issue 10, pp 2173–2186 | Cite as

Quaternary geographical sibling speciation and population structuring in the Eastern Atlantic skates (suborder Rajoidea) Raja clavata and R. straeleni

  • Paola Pasolini
  • Chiara Ragazzini
  • Zelia Zaccaro
  • Alessia Cariani
  • Giorgia Ferrara
  • Elena G. Gonzalez
  • Monica Landi
  • Ilaria Milano
  • Marco Stagioni
  • Ilaria Guarniero
  • Fausto Tinti
Original Paper

Abstract

The European Raja clavata and the South African R. straeleni are marine skates which exhibit highly conserved morphological and ecological traits. Owing to this, taxonomic and evolutionary relationships between the two taxa have not yet fully elucidated. Here, we have tested the hypothesis that restricted gene flow and genetic divergence between these taxa might be associated with climatic/oceanographic discontinuities by surveying genetic variation in ten geographical samples at control region (CR) and amplified fragment length polymorphism (AFLP) loci. The clustering of CR haplotypes in two reciprocally monophyletic clades consistent with taxon zoogeography and the significant AFLP F values between the European and South African populations indicated the two taxa as recently diverged peripatric sibling species. Within each species, significant spatial genetic heterogeneity among samples at both markers revealed population structuring. We argued that structured populations and isolated sibling species might represent two stages of geographical speciation.

Keywords

Amplify Fragment Length Polymorphism Control Region Last Glacial Maximum Amplify Fragment Length Polymorphism Marker Amplify Fragment Length Polymorphism Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank the associate editor and the anonymous reviewers for the scientific criticisms and editing suggestions which have really improved the soundness and readability of the ms. We thank Cecilia Mancusi and Fabrizio Serena (ARPA Toscana, Livorno, Italy), Torkild Bakken (Norwegian University of Science and Technology, Trondheim, Norway), Malia Chevolot (University of Groningen, Haren, The Netherlands), Farid Hemida (ENSSMAL, Algiers, Algeria), Corrado Piccinetti (University of Bologna, Fano, Italy), Diana Zaera-Perez (Institute of Marine Research, Bergen, Norway) and Rob Leslie (Dept. Agriculture, Forestry and Fisheries, Cape Town, South Africa) for providing tissue samples for this study. The research work was supported by grants given by the University of Bologna to FT and PP. The authors declare that they have no conflict of interest.

Supplementary material

227_2011_1722_MOESM1_ESM.pdf (314 kb)
Supplementary material 1 (PDF 313 kb)

References

  1. Akaike H (1973) Information theory as an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Second International Symposium on Information Theory. Akademiai Kiado, Budapest, Hungary, pp 267–281Google Scholar
  2. Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, Ingram KK, Das I (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155. doi: 10.1016/j.tree.2006.11.004 CrossRefGoogle Scholar
  3. Bowen BW, Bass AL, Soares L, Toonen RJ (2005) Conservation implications of complex population structure: lessons from the loggerhead turtle (Caretta caretta). Mol Ecol 14:2389–2402. doi: 10.1111/j.1365-294X.2005.02598.x CrossRefGoogle Scholar
  4. Briggs JC (1974) Marine Zoogeography. McGraw-Hill Book Co., New YorkGoogle Scholar
  5. Camperi M, Tricas TC, Brown BR (2007) From morphology to neural information: the electric sense of the skate. PLoS Comput Biol 3:e113CrossRefGoogle Scholar
  6. Capapé C, Desoutter M (1981) Nouvelle description de Raja (Raja) clavata Linnaeus, 1758 et note sur la validité de Raja (Raja) capensis Müller et Henle, 1841. Cybium 5:23–39Google Scholar
  7. Cariani A, Carlesi L, Tosarelli I, Serét B, Tinti F (2010) Cryptic speciation and evolutionary history of the Raja miraletus species complex. In: Proceedings of the 14th European Elasmobranch Association Scientific Conference, Galway, Ireland, 10–13th November 2010. Irish Elasmobranch Group, p 18Google Scholar
  8. Chevolot M, Ellis JR, Hoarau G, Rijnsdorp AD, Stain WT, Olsen JL (2006a) Population structure of the thornback ray (Raja clavata L.) in British waters. J Sea Res 56:305–316. doi: 10.1016/j.seares.2006.05.005 CrossRefGoogle Scholar
  9. Chevolot M, Hoarau G, Rijnsdorp AD, Stam WT, Olsen JL (2006b) Phylogeography and population structure of thornback rays (Raja clavata L., Rajidae). Mol Ecol 15:3693–3705. doi: 10.1111/j.1365-294X.2006.03043.x CrossRefGoogle Scholar
  10. Chevolot M, Wolfs PHJ, Palsson J, Rijnsdorp AD, Stam WT, Olsen JL (2007) Population structure and historical demography of the thorny skate (Amblyraja radiata, Rajidae) in the North Atlantic. Mar Biol 151:1275–1286. doi: 10.1007/s00227-006-0556-1 CrossRefGoogle Scholar
  11. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659CrossRefGoogle Scholar
  12. Cockerham C (1973) Analyses of gene frequencies. Genetics 74:679–700PubMedPubMedCentralGoogle Scholar
  13. Colborn J, Crabtree RE, Shaklee JB, Pfeiler E, Bowen BW (2001) The evolutionary enigma of bonefishes (Albula spp.): cryptic species and ancient separations in a globally distributed shorefish. Evolution 55:807–820CrossRefGoogle Scholar
  14. Compagno LJV, Ebert DA (2007) Southern African skate biodiversity and distribution. Environ Biol Fish 80:125–145. doi: 10.1007/s10641-007-9243-4 CrossRefGoogle Scholar
  15. Compagno LJV, Ebert DA, Cowley PD (1991) Distribution of offshore demersal cartilaginous fish (class Chondrichthyes) off the West-coast of Southern Africa, with notes on their systematics. South Afr J Mar Sci-Suid-Afr Tydsk Seewetens 11:43–139CrossRefGoogle Scholar
  16. Congiu L, Dupanloup I, Patarnello T, Fontana F, Rossi R, Arlati G, Zane L (2001) Identification of interspecific hybrids by amplified fragment length polymorphism: the case of sturgeon. Mol Ecol 10:2355–2359CrossRefGoogle Scholar
  17. Cunningham CW, Collins T (1998) Beyond area relationships: extinction and recolonization in marine molecular biogeography. In: DeSalle R, Schierwater B (eds) Molecular Approaches to Ecology and Evolution Birkhauser-Verlag. Basel, Switzerland, pp 297–322CrossRefGoogle Scholar
  18. Dawson MN, Hamner WM (2005) Rapid evolutionary radiation of marine zooplankton in peripheral environments. Proc Natl Acad Sci USA 102:9235–9240. doi: 10.1073/pnas.0503635102 CrossRefGoogle Scholar
  19. Drummond A, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214CrossRefGoogle Scholar
  20. Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed Phylogenetics and Dating with Confidence. PLoS Biol 4:e88CrossRefGoogle Scholar
  21. Dulvy NK, Reynolds JD (2009) BIODIVERSITY Skates on thin ice. Nature 462:417. doi: 10.1038/462417a CrossRefGoogle Scholar
  22. Dulvy NK, Metcalfe JD, Glanville J, Pawson MG, Reynolds JD (2000) Fishery stability, local extinctions, and shifts in community structure in skates. Conserv Biol 14:283–293CrossRefGoogle Scholar
  23. Dulvy NK, Sadovy Y, Reynolds JD (2003) Extinction vulnerability in marine populations. Fish Fisheries 4:25–64CrossRefGoogle Scholar
  24. Ebert DA, Compagno LJV (2007) Biodiversity and systematics of skates (Chondrichthyes : Rajiformes : Rajoidei). Environ Biol Fish 80:111–124. doi: 10.1007/s10641-007-9247-0 CrossRefGoogle Scholar
  25. Ellis JR, Shackley SE (1995) Observations on egg-laying in the thornback ray. J Fish Biol 46:903–904CrossRefGoogle Scholar
  26. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes—application to human mitochondrial-DNA restriction data. Genetics 131:479–491PubMedPubMedCentralGoogle Scholar
  27. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinformatics 1:47–50CrossRefGoogle Scholar
  28. Excoffier L, Hofer T, Foll M (2009) Detecting loci under selection in a hierarchically structured population. Heredity 103:285–298CrossRefGoogle Scholar
  29. Froese R, Pauly D (eds) (2011) FishBase. version (2/2011). www.fishbase.org
  30. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925PubMedPubMedCentralGoogle Scholar
  31. Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318CrossRefGoogle Scholar
  32. Gasse F, Chalié F, Vincens A, Williams MAJ, Williamson D (2008) Climatic patterns in equatorial and southern Africa from 30, 000 to 10, 000 years ago reconstructed from terrestrial and near-shore proxy data. Quat Sci Rev 27:2316–2340CrossRefGoogle Scholar
  33. Griffiths AM, Sims DW, Cotterell SP, El Nagar A, Ellis JR, Lynghammar A, McHugh M, Neat FC, Pade NG, Queiroz N, Serra-Pereira Br, Rapp T, Wearmouth VJ, Genner MJ (2010) Molecular markers reveal spatially segregated cryptic species in a critically endangered fish, the common skate (Dipturus batis). Proc R Soc B: Biol Sci 277:1497–1503. doi: 10.1098/rspb.2009.2111 CrossRefGoogle Scholar
  34. Hasegawa M, Kishino H, Yano T-a (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174CrossRefGoogle Scholar
  35. Hulley PA (1972) The origin, interrelationships and distribution of southern African Rajidae (Chondrichthyes, Batoidei). Annu S African Mus 60:1–103Google Scholar
  36. Iglésias SP, Toulhoat L, Sellos DY (2010) Taxonomic confusion and market mislabelling of threatened skates: important consequences for their conservation status. Aquatic Conserv: Mar Freshw Ecosyst 20:319–333. doi: 10.1002/aqc.1083 CrossRefGoogle Scholar
  37. Jackson JBC, Sheldon PR (1994) Constancy and change of life in the Sea. Phil Trans R Soc London Series B-Biol Sci 344:55–60CrossRefGoogle Scholar
  38. Kriwet J, Kiessling W, Klug S (2009) Diversification trajectories and evolutionary life-history traits in early sharks and batoids. Proc R Soc B: Biol Sci 276:945–951. doi: 10.1098/rspb.2008.1441 CrossRefGoogle Scholar
  39. Krueger S, Leuschner DC, Ehrmann W, Schmiedl G, Mackensen A, Diekmann B (2008) Ocean circulation patterns and dust supply into the South Atlantic during the last glacial cycle revealed by statistical analysis of kaolinite/chlorite ratios. Mar Geol 253:82–91CrossRefGoogle Scholar
  40. Last PR, Yearsley GK (2002) Zoogeography and relationships of Australasian skates (Chondrichthyes : Rajidae). J Biogeogr 29:1627–1641CrossRefGoogle Scholar
  41. Lynch M, Milligan BG (1994) Analysis of population genetic-structure with RAPD markers. Mol Ecol 3:91–99CrossRefGoogle Scholar
  42. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220Google Scholar
  43. Martin AP, Palumbi SR (1993) Body size, metabolic rate, generation time, and the molecular clock. Proc Natl Acad Sci USA 90:4087–4091CrossRefGoogle Scholar
  44. Mayr E (1942) Systematics and the origin of species. Columbia University Press, New YorkGoogle Scholar
  45. Mayr E (1954) Geographic speciation in tropical echinoids. Evolution 8:1–18CrossRefGoogle Scholar
  46. Mayr E (1963) Animal species and evolution. Harvard University Press, CambridgeCrossRefGoogle Scholar
  47. McEachran JD, Seret B, Miyake T (1989) Morphological variation within Raja miraletus and status of R. ocellifera (Chondrichthyes, Rajoidei). Copeia 1989:629–641CrossRefGoogle Scholar
  48. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  49. Nei M, Maruyama T, Chakraborty R (1975) The Bottleneck Effect and Genetic Variability in Populations. Evolution 29:1–10CrossRefGoogle Scholar
  50. Neville H, Isaak D, Thurow R, Dunham J, Rieman B (2007) Microsatellite variation reveals weak genetic structure and retention of genetic variability in threatened Chinook salmon (Oncorhynchus tshawytscha) within a Snake River watershed. Conserv Gen 8:133–147. doi: 10.1007/s10592-006-9155-4 CrossRefGoogle Scholar
  51. Palumbi SR (1994) Genetic-divergence, reproductive isolation, and marine speciation. Annu Rev Ecol Syst 25:547–572CrossRefGoogle Scholar
  52. Palumbi SR, Lessios HA (2005) Evolutionary animation: how do molecular phylogenies compare to Mayr”s reconstruction of speciation patterns in the sea? Proc Natl Acad Sci USA 102:6566–6572. doi: 10.1073/pnas.0501806102 CrossRefGoogle Scholar
  53. Patarnello T, Volckaert F, Castilho R (2007) Pillars of Hercules: is the Atlantic-Mediterranean transition a phylogeographical break? Mol Ecol 16:4426–4444CrossRefGoogle Scholar
  54. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi: 10.1111/j.1471-8286.2005.01155.x CrossRefGoogle Scholar
  55. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818CrossRefGoogle Scholar
  56. Raymond M, Rousset F (1995) GENEPOP (version-1.2)—Population-genetics software for exact tests and ecumenicism. J Hered 86:248–249CrossRefGoogle Scholar
  57. Rice WR (1989) Analyzing Tables of Statistical Tests. Evolution 43:223–225CrossRefGoogle Scholar
  58. Rocha LA, Craig MT, Bowen BW (2007) Phylogeography and the conservation of coral reef fishes. Coral Reefs 26:501–512. doi: 10.1007/s00338-007-0261-7 CrossRefGoogle Scholar
  59. Rogers A, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569Google Scholar
  60. Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497. doi: 10.1093/bioinformatics/btg359 CrossRefGoogle Scholar
  61. Ruxton GD (2006) The unequal variance t-test is an underused alternative to Student’s t-test and the Mann-Whitney U test. Behav Ecol 17:688–690. doi: 10.1093/beheco/ark016 CrossRefGoogle Scholar
  62. Serena F (2005) Field identification guide to the sharks and rays of the Mediterranean and Black Sea. Food and Agriculture Organization of the United Nations (FAO) Species Identification Guide for Fishery Purposes:1–97Google Scholar
  63. Simpfendorfer CA, Heupel MR (2004) Assessing habitat use and movement. In: Carrier JC, Musick JA, HM R (eds) Biology of Sharks and Their Relatives CRC Press. Boca Raton, FL, USA, pp 553–572CrossRefGoogle Scholar
  64. Slatkin M, Voelm L (1991) F(ST) in a Hierarchical Island Model. Genetics 127:627–629PubMedPubMedCentralGoogle Scholar
  65. Stehmann M, Burkel DL (1984) Rajidae. In: Whitehead PJP, Bauchot ML, Houreau J-C, Nielsen J, Tortonese E (eds) Fishes of the North-eastern Atlantic and Mediterranean, vol 1. UNESCO, Paris, pp 163–196Google Scholar
  66. Tajima F (1989) Statistical Method for Testing the Neutral Mutation Hypothesis by DNA Polymorphism. Genetics 123:585–595PubMedPubMedCentralGoogle Scholar
  67. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial-DNA in humans and chimpanzees. Mol Biol Evol 10:512–526PubMedGoogle Scholar
  68. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi: 10.1093/molbev/msm092 CrossRefGoogle Scholar
  69. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefGoogle Scholar
  70. Tricas TC, Michael SW, Sisneros JA (1995) Electrosensory optimization to conspecific phasic signals for mating. Neurosci Lett 202:129–132CrossRefGoogle Scholar
  71. Valsecchi E, Pasolini P, Bertozzi M, Garoia F, Ungaro N, Vacchi M, Sabelli B, Tinti F (2005) Rapid Miocene-Pliocene dispersal and evolution of Mediterranean rajid fauna as inferred by mitochondrial gene variation. J Evol Biol 18:436–446. doi: 10.1111/j.1420-9101.2004.00829.x CrossRefGoogle Scholar
  72. van Herwerden L, Choat JH, Dudgeon CL, Carlos G, Newman SJ, Frisch A, van Oppen M (2006) Contrasting patterns of genetic structure in two species of the coral trout Plectropomus (Serranidae) from east and west Australia: introgressive hybridisation or ancestral polymorphisms. Mol Phyl Evol 41:420–435. doi: 10.1016/j.ympev.2006.04.024 CrossRefGoogle Scholar
  73. Vekemans X, Beauwens T, Lemaire M, Roldan-Ruiz I (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol 11:139–151CrossRefGoogle Scholar
  74. Walker P, Howlett G, Millner R (1997) Distribution, movement and stock structure of three ray species in the North Sea and eastern English Channel. ICES J Mar Sci 54:797–808. doi: 10.1006/jmsc.1997.0223 CrossRefGoogle Scholar
  75. Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia’s fish species. Phil Trans R Soc London Series B-Biol Sci 360:1847–1857. doi: 10.1098/rstb.2005.1716 CrossRefGoogle Scholar
  76. Williamson PG (1987) Selection or constraint? A proposal on the mechanism for stasis. In: Campbell SW, Day MF (eds) Rates of evolution. Allen and Unwin, London, pp 121–134Google Scholar
  77. Winnepenninckx B, Backeljau T, Dewachter R (1993) Extraction of high-molecular-weight DNA from mollusks. Trends Genetics 9:407CrossRefGoogle Scholar
  78. Zhivotovsky LA (1999) Estimating population structure in diploids with multilocus dominant DNA markers. Mol Ecol 8:907–913CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Paola Pasolini
    • 1
  • Chiara Ragazzini
    • 1
  • Zelia Zaccaro
    • 1
  • Alessia Cariani
    • 1
  • Giorgia Ferrara
    • 1
  • Elena G. Gonzalez
    • 2
  • Monica Landi
    • 1
    • 4
  • Ilaria Milano
    • 1
  • Marco Stagioni
    • 1
  • Ilaria Guarniero
    • 3
  • Fausto Tinti
    • 1
  1. 1.Laboratory of Molecular Genetics of Environmental and Fishery Resources, Department of Experimental and Evolutionary BiologyAlma Mater Studiorum University of BolognaBolognaItaly
  2. 2.Department of Biochemistry and Molecular Biology IV, Veterinary SchoolComplutense University of MadridMadridSpain
  3. 3.Department of Veterinary Public Health and Animal PathologyAlma Mater Studiorum University of BolognaOzzano dell’Emilia (BO)Italy
  4. 4.Department of BiologyUniversity of MinhoBragaPortugal

Personalised recommendations