Marine Biology

, 158:2009 | Cite as

Salps in the Lazarev Sea, Southern Ocean: I. Feeding dynamics

  • Lena von Harbou
  • Corinna D. Dubischar
  • Evgeny A. Pakhomov
  • Brian P. V. Hunt
  • Wilhelm Hagen
  • Ulrich V. Bathmann
Original Paper

Abstract

Feeding dynamics of the Antarctic salps Ihlea racovitzai and Salpa thompsoni were studied in the Lazarev Sea in fall 2004, summer 2005–2006 and winter 2006. Pigment concentrations in the guts of both species were positively correlated with ambient surface chlorophyll a (chl a). No evidence was found for salp clogging even at dense surface concentrations of up to 7 μg chl a L−1. However, gut pigment concentrations had a lower range than ambient pigment concentrations, suggesting that salps increased retention times of ingested material in low-food environments. For medium-sized I. racovitzai and S. thompsoni, estimated individual daily rations reached 7–10 and >100% of body carbon in winter and summer, respectively. Daily respiratory needs of I. racovitzai and S. thompsoni accounted for 28 and 22% of daily carbon assimilation based on pigment ingestion rates in winter, and for 2 and 1% in summer, respectively. The grazing impact of the salp populations on the phytoplankton standing stock was negligible during all seasons due to generally low salp densities. Fatty acid trophic biomarkers in the salps suggest high year-round contributions of flagellates and modest contributions of diatoms to the salp’s diet. These markers showed low seasonal variability for I. racovitzai. The more pronounced seasonality of trophic markers in S. thompsoni were likely related to their generally deeper residence depth in winter linked to a seasonal alternation of sexual and asexual generations.

References

  1. Alcaraz M, Saiz E, Fernandez JA, Trepat I, Figueiras F, Calbet A, Bautista B (1998) Antarctic zooplankton metabolism: carbon requirements and ammonium excretion of salps and crustacean zooplankton in the vicinity of the Bransfield Strait during January 1994. J Mar Syst 17:347–359CrossRefGoogle Scholar
  2. Andersen V (1985) Filtration and ingestion rates of Salpa fusiformis Cuvier (Tunicata: Thaliacea): effects of size, individual weight and algal concentration. J Exp Mar Biol Ecol 87:13–29CrossRefGoogle Scholar
  3. Andersen V (1986) Effect of temperature on the filtration rate and percentage assimilation of Salpa fusiformis Cuvier (Tunicata: Thaliacea). Hydrobiologia 137:135–140CrossRefGoogle Scholar
  4. Ashjian CJ, Smith S, Bignami F, Hopkins T, Lane P (1997) Distribution of zooplankton on the Northeast Water polynya during summer 1992. J Mar Syst 10:279–298CrossRefGoogle Scholar
  5. Atkinson A, Siegel V, Pakhomov E, Rothery P (2004) Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432:100–103CrossRefGoogle Scholar
  6. Boysen-Ennen E, Hagen W, Hubold G, Piatkowski U (1991) Zooplankton biomass in the ice-covered Weddell Sea, Antarctica. Mar Biol 111:227–235CrossRefGoogle Scholar
  7. Brena C, Cima F, Burighel P (2003) The exceptional “blind” gut of Appendicularia sicula (Appendicularia, Tunicata). Zool Anz 242:169–177CrossRefGoogle Scholar
  8. Bruland KW, Silver MW (1981) Sinking rates of fecal pellets from gelatinous zooplankton (salps, pteropods, doliolids). Mar Biol 63:295–300CrossRefGoogle Scholar
  9. Casareto BE, Nemoto T (1986) Salps of the Southern Ocean (Australian sector) during the 1983–1984 summer, with special reference to the species Salpa thompsoni, Foxton 1961. Mem Natl Inst Polar Res 40:221–239Google Scholar
  10. Chiba S, Horimoto N, Satoh R, Yamaguchi Y, Ishimaru T (1998) Macrozooplankton distribution around the Antarctic divergence off Wilkes Land in the 1996 austral summer: with reference to high abundance of Salpa thompsoni. Proc NIPR Symp Polar Biol 11:33–50Google Scholar
  11. Cima F, Brena C, Burighel P (2002) Multifarious activities of gut epithelium in an appendicularian (Oikopleura dioica: Tunicata). Mar Biol 141:479–490CrossRefGoogle Scholar
  12. Cisewski B, Strass VH, Leach HL (2011) Circulation and transport of water masses in the Lazarev Sea, Antarctica, during summer and winter 2006. Deep-Sea Res I. doi:10.1016/j.dsr.2010.12.001
  13. Conover RJ, Durvasula R, Roy S, Wang R (1986) Probable loss of chlorophyll-derived pigments during passage through the gut. Limnol Oceanogr 31:878–887CrossRefGoogle Scholar
  14. Dalsgaard J, John S, Kattner G, Müller-Navarra D, Hagen W (2003) Fatty acid trophic markers in the pelagic environment- a review. Ad Mar Biol 46:227–340Google Scholar
  15. Dubischar CD, Bathmann UV (1997) Grazing impact of copepods and salps on phytoplankton in the Atlantic sector of the Southern Ocean. Deep-Sea Res II 44:415–433CrossRefGoogle Scholar
  16. Dubischar CD, Pakhomov EA, von Harbou L, Hunt BPV, Bathmann UV (2011) Salps in the Lazarev Sea, Southern Ocean: II. Morphometrics and Biochemical composition. Mar BiolGoogle Scholar
  17. Ducklow HW, Fraser W, Karl DM, Quetin LB, Ross RM, Smith RC, Stammerjohn SE, Vernet M, Daniels RM (2006) Water-column processes in the West Antarctic Peninsula and the Ross Sea: Interannual variations and foodweb structure. Deep-Sea Res II 53:834–852CrossRefGoogle Scholar
  18. Falk-Petersen S, Hagen W, Kattner G, Clarke A, Sargent JR (2000) Lipids, trophic relationships, and biodiversity in Arctic and Antarctic krill. Can J Fish Aquat Sci 57:178–191CrossRefGoogle Scholar
  19. Foxton P (1966) The distribution and life-history of Salpa thompsoni Foxton with observations on a related species, Salpa gerlachei Foxton. Discov Rep 34:1–116Google Scholar
  20. Fukuchi M, Tanimura A, Ohtsuka A (1985) Zooplankton community conditions under sea ice near Syowa Station, Antarctica. Bull Mar Sci 37:518–528Google Scholar
  21. Gleitz M, Bathmann UV, Lochte K (1994) Build-up and decline of summer phytoplankton biomass in the eastern Weddell Sea, Antarctica. Polar Biol 14:413–422CrossRefGoogle Scholar
  22. Hagen W (1999) Reproductive strategies and energetic adaptations of polar zooplankton. Invertebr Reprod Dev 36(1–3):25–34CrossRefGoogle Scholar
  23. Hagen W (2000) Lipids. In: Harris R, Wiebe P, Lenz J, Skjoldal H, Huntley M (eds) ICES zooplankton methodology manual. Academic Press, London, pp 113–119Google Scholar
  24. Hopkins TL, Lancraft TM, Torres JJ, Donnelly J (1993) Community structure and trophic ecology of zooplankton in the Scotia Sea marginal ice zone in winter (1988). Deep-Sea Res I 40:81–105CrossRefGoogle Scholar
  25. Hunt BPV, Hosie GW (2005) Zonal structure of zooplankton communities in the Southern Ocean South of Australia: results from a 2150 km continuous plankton recorder transect. Deep-Sea Res I 52:1241–1271CrossRefGoogle Scholar
  26. Hunt BPV, Hosie GW (2006) The seasonal succession of zooplankton in the Southern Ocean south of Australia, part I: The seasonal ice zone. Deep-Sea Res I 53:1182–1202CrossRefGoogle Scholar
  27. Ikeda T, Mitchell AW (1982) Oxygen uptake, ammonia excretion and phosphate excretion by krill and other Antarctic zooplankton in relation to their body size and chemical composition. Mar Biol 71:283–298CrossRefGoogle Scholar
  28. Ikeda T, Hosie G, Kirkwood J (1984) ADBEX II cruise krill/zooplankton sampling data. ANARE Res Notes 23:1–32Google Scholar
  29. Ju S-J, Harvey HR (2004) Lipids as markers of nutritional condition and diet in the Antarctic krill Euphausia superba and Euphausia crystallorophias during austral winter. Deep-Sea Res II 51:2199–2214CrossRefGoogle Scholar
  30. Ju S-J, Scolardi K, Daly KL, Harvey HR (2004) Understanding the trophic role of the Antarctic ctenophore, Callianira antarctica, using lipid biomarkers. Polar Biol 27:782–792CrossRefGoogle Scholar
  31. Kattner G, Fricke HSG (1986) Simple gas-liquid chromatographic method for the simultaneous determination of fatty acids and alcohols in wax esters of marine organisms. J Chromatogr A 361:263–268CrossRefGoogle Scholar
  32. Kattner G, Hagen W (1995) Polar herbivorous copepods- different pathways in lipid biosynthesis. ICES J Mar Sci 52:329–335CrossRefGoogle Scholar
  33. Kattner G, Albers C, Graeve M, Schnack-Schiel SB (2003) Fatty acid and alcohol composition of the small polar copepods, Oithona and Oncaea: indication on feeding modes. Polar Biol 26:666–671CrossRefGoogle Scholar
  34. Kawamura A, Michimori K, Moto J (1994) Marked inverse distribution of salps to other macrozooplankton in waters adjacent to the South Shetland Islands. Proc NIPR Symp Polar Biol 7:70–81Google Scholar
  35. Krapp RH, Berge J, Flores H, Gulliksen B, Werner I (2008) Sympagic occurrence of eusirid and lysianassoid amphipods under Antarctic pack ice. Deep-Sea Res II 55:1015–1023CrossRefGoogle Scholar
  36. Lancraft TM, Hopkins TL, Torres JJ, Donnelly J (1991) Oceanic micronektonic/macrozooplanktonic community structure and feeding in ice-covered Antarctic waters during the winter (AMERIEZ 1988). Polar Biol 11:157–167CrossRefGoogle Scholar
  37. Lee RF, Hagen W, Kattner G (2006) Lipid storage in marine zooplankton—a review. Mar Ecol Prog Ser 307:273–306CrossRefGoogle Scholar
  38. Li C, Sun S, Zhang G, Ji P (2001) Summer feeding activities of zooplankton in Prydz Bay, Antarctica. Polar Biol 24:892–900CrossRefGoogle Scholar
  39. Lombard F, Renaud F, Sainsbury C, Sciandra A, Gorsky G (2009) Appendicularian ecophysiology I. Food concentration dependent clearance rate, assimilation efficiency, growth and reproduction of Oikopleura dioica. J Mar Syst 78:606–616CrossRefGoogle Scholar
  40. Mackas D, Bohrer R (1976) Fluorescence analysis of zooplankton gut contents and an investigation of diel feeding patterns. J Exp Mar Biol Ecol 25:77–85CrossRefGoogle Scholar
  41. Madin LP, Deibel D (1998) Feeding and energetics of Thaliacea. In: Bone Q (ed) The biology of pelagic tunicates. Oxford University Press, Oxford, pp 81–103Google Scholar
  42. Madin LP, Kremer P (1995) Determination of the filter-feeding rates of salps (Tunicata, Thaliacea). ICES J Mar Sci 52:583–595CrossRefGoogle Scholar
  43. Madin LP, Purcell JE (1992) Feeding, metabolism, and growth of Cyclosalpa bakeri in the subarctic Pacific. Limnol Oceanogr 37:1236–1251CrossRefGoogle Scholar
  44. Meyer B (2005) German contribution to SO-GLOBEC: Lazarev Sea Krill study (LAKRIS). GLOBEC Int Newslett 11:46–47Google Scholar
  45. Meyer B, Fuentes V, Guerra C, Schmidt K, Atkinson A, Spahic S, Cisewski B, Freier U, Olariaga A, Bathmann U (2009) Physiology, growth and development of larval krill Euphausia superba in autumn and winter in the Lazarev Sea, Antarctica. Limnol Oceanogr 54:1595–1614CrossRefGoogle Scholar
  46. Moline MA, Claustre H, Frazer TK, Schofield O, Vernet M (2004) Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Glob Change Biol 10:1973–1980CrossRefGoogle Scholar
  47. Nishikawa J, Tsuda A (2001) Feeding of the pelagic tunicate, Salpa thompsoni, on flagellates and size-fractionated chlorophyll particles. Plankton Biol Ecol 48:133–135Google Scholar
  48. Nishikawa J, Naganobu M, Ichii T, Ishii H, Terazaki M, Kawaguchi K (1995) Distribution of salps near the south Shetland Islands during austral summer, 1990–1991 with special reference to krill distribution. Polar Biol 15:31–40CrossRefGoogle Scholar
  49. Nöthig E-M, Bathmann U, Jennings JR, Fahrbach E, Gradinger R, Gordon LI, Makarov R (1991) Regional relationships between biological and hydrographical properties in the Weddell Gyre in late austral winter 1989. Mar Chem 35:325–336CrossRefGoogle Scholar
  50. Pakhomov EA (2004) Salp/krill interactions in the eastern Atlantic sector of the Southern Ocean. Deep-Sea Res II 51:2645–2660CrossRefGoogle Scholar
  51. Pakhomov EA, Froneman PW (2004) Zooplankton dynamics in the eastern Atlantic sector of the Southern Ocean during the austral summer 1997/1998-part 2: Grazing impact. Deep-Sea Res II 51:2617–2631CrossRefGoogle Scholar
  52. Pakhomov EA, Froneman PW, Perissinotto R (2002a) Salp/krill interactions in the Southern Ocean: spatial segregation and implications for the carbon flux. Deep-Sea Res II 49:1881–1907CrossRefGoogle Scholar
  53. Pakhomov EA, Froneman PW, Wassmann P, Ratkova T, Arashkevich EG (2002b) Contribution of algal sinking and zooplankton grazing to downward flux in the Lazarev Sea (Southern Ocean) during the onset of phytoplankton bloom: a lagrangian study. Mar Ecol Prog Ser 233:73–88CrossRefGoogle Scholar
  54. Pakhomov EA, Dubischar CD, Strass V, Brichta M, Bathmann UV (2006) The tunicate Salpa thompsoni ecology in the Southern Ocean. I. Distribution, biomass, demography and feeding ecophysiology. Mar Biol 149:609–623CrossRefGoogle Scholar
  55. Pakhomov EA, Dubischar CD, Hunt BPV, Strass V, Cisewski B, Siegel V, von Harbou L, Gurney L, Kitchener J, Bathmann UV (2011) Biology and life cycles of pelagic tunicates in the Lazarev Sea, Southern Ocean. Deep-Sea Res II. doi:10.1016/j.dsr2.2010.11.014
  56. Park C, Wormuth JH (1993) Distribution of Antarctic zooplankton around Elephant Island during the austral summers of 1988, 1989, and 1990. Polar Biol 13:215–225CrossRefGoogle Scholar
  57. Pasternak A, Schnack-Schiel SB (2001) Feeding patterns of dominant Antarctic copepods: an interplay of diapause, selectivity, and availability of food. Hydrobiologia 453(454):25–36CrossRefGoogle Scholar
  58. Perez FF, Figueiras FG, Ríos AF (1994) Nutrient depletion and particulate matter near the ice-edge in the Weddell Sea. Mar Ecol Prog Ser 112:143–153CrossRefGoogle Scholar
  59. Perissinotto R, Pakhomov EA (1998a) Contribution of salps to carbon flux of marginal ice zone of the Lazarev Sea, Southern Ocean. Mar Biol 131:25–32CrossRefGoogle Scholar
  60. Perissinotto R, Pakhomov EA (1998b) The trophic role of the tunicate Salpa thompsoni in the Antarctic marine ecosystem. J Mar Syst 17:361–374CrossRefGoogle Scholar
  61. Perissinotto R, Mayzaud P, Nichols PD, Labat JP (2007) Grazing by Pyrosoma atlanticum (Tunicata, Thaliacea) in the south Indian Ocean. Mar Ecol Prog Ser 330:1–11CrossRefGoogle Scholar
  62. Phillips B, Kremer P, Madin L (2009) Defecation by Salpa thompsoni and its contribution to vertical flux in the Southern Ocean. Mar Biol 156:455–467CrossRefGoogle Scholar
  63. Phleger CF, Nelson MM, Mooney B, Nichols PD (2000) Lipids of Antarctic salps and their commensal hyperiid amphipods. Polar Biol 23:329–337CrossRefGoogle Scholar
  64. Pond DW, Sargent JR (1998) Lipid composition of the pelagic tunicate Dolioletta gegenbauri (Tunicata, Thaliacea). J Plankton Res 20:169–174CrossRefGoogle Scholar
  65. Reinke M (1987) Zur Nahrungs- und Bewegungsphysiologie von Salpa thompsoni und Salpa fusiformis. Rep Polar Res 36:86Google Scholar
  66. Ross RM, Quetin LB, Martinson DG, Iannuzzi RA, Stammerjohn SE, Smith RC (2008) Palmer LTER: patterns of distribution of five dominant zooplankton species in the epipelagic zone west of the Antarctic Peninsula, 1993–2004. Deep-Sea Res II 55:2086–2105CrossRefGoogle Scholar
  67. Sargent JR, Bell MV, Bell JG, Henderson RJ, Tocher DR (1995) Origins and functions of n-3 polyunsaturated fatty acids in marine organisms. In: Ceve G, Paltauf F (eds) Phospholipids: characterisation, metabolism and novel biological application. American Oil Chemists’ Society Press, pp 248–257Google Scholar
  68. Schröder M, Fahrbach E (1999) On the structure and transport of the eastern Weddell Sea. Deep-Sea Res II 46:501–527CrossRefGoogle Scholar
  69. Scott CL, Kwasniewski S, Falk-Petersen S, Sargent JR (2002) Species differences, origins and functions of fatty alcohols and fatty acids in the wax esters and phospholipids of Calanus hyperboreus, C. glacialis and C. finmarchicus from Arctic waters. Mar Ecol Prog Ser 235:127–134CrossRefGoogle Scholar
  70. Siegel V, Piatkowski U (1990) Variability in the macrozooplankton community off the Antarctic Peninsula. Polar Biol 10:373–386Google Scholar
  71. Smetacek V (2001) A watery arms race. Nature 411:745CrossRefGoogle Scholar
  72. Smith WO Jr, Codispoti LA, Nelson DM, Manley T, Buskey EJ, Niebauer HJ, Cota GF (1991) Importance of Phaeocystis blooms in the high-latitude ocean carbon cycle. Nature 352:514–516CrossRefGoogle Scholar
  73. Spiridonov VA, Nöthig E-M, Schröder M, Wistozki A (1996) The onset of biological winter in the eastern Weddell Gyre (Antarctica) planktonic community. J Mar Sys 9:211–230CrossRefGoogle Scholar
  74. Strickland JDH, Parsons TR (1968) A practical handbook of seawater analysis. Bull Fish Res Bd Canada 167:1–311Google Scholar
  75. Sutherland KR, Madin LP, Stocker R (2010) Filtration of submicrometer particles by pelagic tunicates. Proc Natl Acad Sci USA 107:15129–15134CrossRefGoogle Scholar
  76. Tanimura A, Kawaguchi S, Oka N, Nishikawa J, Toczko S, Takahashi KT, Terazaki M, Odate T, Fukuchi M, Hosie G (2008) Abundance and grazing impacts of krill, salps and copepods along the 140°E meridian in the Southern Ocean during summer. Antarct Sci 20:365–379CrossRefGoogle Scholar
  77. Thurber AR (2007) Diets of Antarctic sponges: links between the pelagic microbial loop and benthic metazoan food web. Mar Ecol Prog Ser 351:77–89CrossRefGoogle Scholar
  78. Torres JJ, Lancraft TM, Weigle BL, Hopkins TL, Robison BH (1984) Distribution and abundance of fishes and salps in relation to the marginal ice zone of the Scotia Sea, November and December 1983. Antarct J US 19:117–119Google Scholar
  79. Troedsson C, Grahl-Nielsen O, Thompson EM (2005) Variable fatty acid composition of the pelagic appendicularian Oikopleura dioica in response to dietary quality and quantity. Mar Ecol Prog Ser 289:165–176CrossRefGoogle Scholar
  80. Vargas CA, Madin LP (2004) Zooplankton feeding ecology: clearance and ingestion rates of the salps Thalia democratica, Cyclosalpa affinis, and Salpa cylindrica on naturally occurring particles in the Mid-Atlantic Bight. J Plankton Res 26:827–833CrossRefGoogle Scholar
  81. Voronina NM (1998) Comparative abundance and distribution of major filter-feeders in the Antarctic pelagic zone. J Mar Syst 17:375–390CrossRefGoogle Scholar
  82. Voronina NM, Maslennikov VV, Ratkova T (2005) Changes in the structure of Antarctic plankton in the regions of mass development of salps. Oceanology 45:368–375Google Scholar
  83. Wexels Riser C, Wassmann P, Olli K, Pasternak A, Arashkevich E (2002) Seasonal variation in production, retention and export of zooplankton faecal pellets in the marginal ice zone and central Barents Sea. J Mar Sys 38:175–188CrossRefGoogle Scholar
  84. Witek Z, Kittel W, Czykieta H, Zmijewska MI, Presler E (1985) Macrozooplankton in the southern Drake Passage and in the Bransfield Strait during BIOMASS-SIBEX (December 1983–January 1984). Pol Polar Res 6:95–115Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Lena von Harbou
    • 1
  • Corinna D. Dubischar
    • 1
  • Evgeny A. Pakhomov
    • 2
  • Brian P. V. Hunt
    • 2
  • Wilhelm Hagen
    • 3
  • Ulrich V. Bathmann
    • 1
  1. 1.Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany
  2. 2.Department of Earth and Ocean SciencesUniversity of British ColumbiaVancouverCanada
  3. 3.Marine ZoologyUniversity of BremenBremenGermany

Personalised recommendations