Marine Biology

, Volume 158, Issue 5, pp 1149–1161 | Cite as

Comparison of the statolith structures of Chironex fleckeri (Cnidaria, Cubozoa) and Periphylla periphylla (Cnidaria, Scyphozoa): a phylogenetic approach

  • I. SötjeEmail author
  • F. Neues
  • M. Epple
  • W. Ludwig
  • A. Rack
  • M. Gordon
  • R. Boese
  • H. Tiemann
Original Paper


The rhopalia and statocysts of Periphylla periphylla (Péron and Lesueur in Ann Mus Hist Nat Marseille 14:316–366,1809) and Chironex fleckeri Southcott (Aust J Mar Freshw Res 7(2):254–280 1956) were examined histologically and showed several homologous characteristics. Differences in sensory area distribution could be connected to a slightly different functionality of equilibrium sensing. In P. periphylla, the statoliths (crystals) grow independently of each other; whereas in C. fleckeri, one large crystal covers the smaller ones. The structures of both statoliths were examined in detail with single-crystal diffraction, microtomography and diffraction contrast tomography. The single compact statolith of C. fleckeri consisted of bassanite as was previously known only for other rhopaliophoran medusae. An origin area with several small oligocrystals was located in the centre of the cubozoan statolith. The origin areas and the accretion of statoliths are similar in both species. Our results lead to the assumption that the single bassanite statolith of C. fleckeri (Cnidaria, Cubozoa) is a progression of the scyphozoan multiplex statolith. It is therefore suggested that the Cubozoa are derived from a scyphozoan ancestor and are a highly developed taxa within the Rhopaliophora.


Sensory Area Pseudostratified Epithelium Gastrodermal Cell Gastrovascular Cavity Calcium Sulphate Hemihydrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to HASYLAB at DESY, Hamburg and ANKA, Karlsruhe as well as the European Synchrotron Radiation Facility in Grenoble (France) for generous allocation of beamtime. For technical assistance and reconstruction of the microtomography scans at DESY, we thank Felix Beckmann and Julia Herzen. Paulina Kämpfe and Henning Urch we thank for assistance during image recording at DESY. For assistance in specimen collection, we thank Jamie Seymour of TASRU (JCU) and grants from the Lions Foundation, National Geographic, Australian Geographic, Cairns City Council, Cardwell City Council, Smart State QLD, JCUPRS & GRS and Rio Tinto.


  1. Abriel W, Nesper R (1993) Determination of crystal structure of CaSO4(H2O)0.5 by X-ray diffraction and potential profile calculations (in German). Z Kristallogr 205:99–113CrossRefGoogle Scholar
  2. Adam H, Czihak G (1964) Arbeitsmethoden der makroskopischen und mikroskopischen Anatomie. Ein Laboratoriumshandbuch für Biologen, Mediziner und technische Hilfskräfte. Fischer, StuttgartGoogle Scholar
  3. Adler L, Röper M, Jarms G, Rothgänger M (2007) Erstnachweis einer fossilen Hydromeduse vom Typ der rezenten Aequoreidae (Hydrozoa, Cnidaria) in den Plattenkalken von Painten. Acheopteryx 25:15–20Google Scholar
  4. Arai MN (1997) A functional biology of Scyphozoa. Chapman & Hall, LondonGoogle Scholar
  5. Arneson AC, Cutress CE (1976) Life history of Carybdea alata Reynaud (1830) (Cubomedusae). In: Mackie GO (ed) Coelenterate ecology and behaviour. Plenum, New York, pp 227–236Google Scholar
  6. Ax P (1995) Das System der Metazoa I-III. Fischer/Spektrum, StuttgartGoogle Scholar
  7. Becker A, Sötje I, Paulmann C, Beckmann F, Donath T, Boese R, Prymak O, Tiemann H, Epple M (2005) Calcium sulfate hemihydrate is the inorganic mineral in statoliths of scyphozoan medusae (Cnidaria). Dalton Trans 1:1545–1550CrossRefGoogle Scholar
  8. Beckmann F, Bonse U, Biermann T (1999) New developments in attenuation and phase-contrast microtomography using synchrotron radiation with low and high photon energies. Proc SPIE 3772:179–187CrossRefGoogle Scholar
  9. Berger EW (1900) Physiology and histology of the cubomedusae including Dr. F.S. Conants notes on the physiology. The Hohns Hopkins Press, Baltimore, pp 1–81Google Scholar
  10. Bigelow RP (1910) A comparison of the sense organs in medusae of the family Pelagiidae. J Exp Zool 9:751–785CrossRefGoogle Scholar
  11. Bonse U, Busch F (1996) X-ray computed microtomography (μCT) using synchrotron radiation (SR). Prog Biophys Molec Biol 65:133–169CrossRefGoogle Scholar
  12. Boßelmann F, Epple M, Sötje I, Tiemann H (2007) Statoliths of calcium sulfate hemihydrate are used for gravity sensing in rhopaliophoran medusae (Cnidaria). In: Baeuerlein E (ed) Biomineralisation: biological aspects and structure formation. Wiley-VCH, Weinheim, pp 261–272Google Scholar
  13. Calder DR (1973) Laboratory observations on the life history of Rhopilema verrilli (Scyphozoa: Rhizostomeae). Mar Biol 21:109–114CrossRefGoogle Scholar
  14. Calder DR (1982) Life history of the cannonball jellyfish, Stomolophus meleagris L. Agassiz, 1860 (Scyphozoa, Rhizostomida). Biol Bull 162:149–162CrossRefGoogle Scholar
  15. Cartwright P, Halgedahl SL, Hendricks JR, Jarrard RD, Marques AC, Collins AG, Liebermann BS (2007) Exceptionally preserved jellyfish from the Middle Cambrian. PLoS ONE 2:e1121CrossRefGoogle Scholar
  16. Chapman DM (1985) X-ray microanalysis of selected coelenterate statoliths. J Mar Biol Assoc UK 65:617–627CrossRefGoogle Scholar
  17. Claus C (1878) Untersuchungen über Charybdea marsupialis. Alfred Hölder, Wien, pp 1–56Google Scholar
  18. Coates MM (2003) Visual ecology and functional morphology of Cubozoa (Cnidaria). Integr Comp Biol 43:542–548CrossRefGoogle Scholar
  19. Collins AG (2002) Phylogeny of Medusozoa and the evolution of cnidarian life cycles. J Evol Biol 15:418–432CrossRefGoogle Scholar
  20. Collins AG, Bentlage B, Matsumoto GI, Haddock HD, Osborn KJ, Schierwater B (2006) Solution to the phylogenetic enigma of Tetraplatia, a worm-shaped cnidarian. Biol Lett 2:120–124CrossRefGoogle Scholar
  21. Conant FS (1898) The cubomedusae. Johns Hopkins University morphological monographs. The Johns Hopkins Press, Baltimore, pp 1–61Google Scholar
  22. Donath T, Beckmann F, Heijkants RGJC, Brunke O, Schreyer A (2004) Characterization of polyurethane scaffolds using synchrotron radiation based computed microtomography. SPIE: Dev X-Ray Tomogr IV 5535:775–782Google Scholar
  23. Ekström P, Garm A, Pålsson J, Vihtelic TS, Nilsson D-E (2008) Immunohistochemical evidence for multiple photosystems in box jellyfish. Cell Tissue Res 333:115–124CrossRefGoogle Scholar
  24. Fraser JH (1968) Standardization of zooplankton sampling methods at sea. In: Zooplankton sampling, part II. UNESCO Press, Paris, pp 149–168Google Scholar
  25. Garm A, Ekström P, Boudes M, Nilsson D-E (2006) Rhopalia are integrated parts of the central nervous system in box jellyfish. Cell Tissue Res 325:333–343CrossRefGoogle Scholar
  26. Gordon M, Hatcher C, Seymour J (2004) Growth and age determination of the tropical Australian cubozoan Chiropsalmus sp. Hydrobiologia 530(531):339–345CrossRefGoogle Scholar
  27. Haeckel E (1879) Das System der Medusen. Erster Teil einer Monographie der Medusen. Fischer, JenaGoogle Scholar
  28. Hertwig O, Hertwig R (1878) Das Nervensystem und die Sinnesorgane der Medusen. FCW Vogel, LeipzigGoogle Scholar
  29. Hesse R (1895) Über das Nervensystem und die Sinnesorgane von Rhizostoma buvieri. Tübinger Zoologische Arbeiten 1:85–130Google Scholar
  30. Hofman DK, Neumann R, Henne K (1978) Strobilation, budding and initiation of scyphistoma morphogenesis in the rhizostome Cassiopea andromeda (Cnidaria: Scyphozoa). Mar Biol 47:161–176CrossRefGoogle Scholar
  31. Holst S, Sötje I, Tiemann H, Jarms G (2007) Life cycle of the rhizostome jellyfish Rhizostoma octopus (L.) (Scyphozoa, Rhizostomeae), with studies on cnidocysts and statoliths. Mar Biol 151:1695–1710CrossRefGoogle Scholar
  32. Holtmann M, Thurm U (2001) Variations of concentric hair cells in a cnidarian sensory epithelium (Coryne tubulosa). J Comp Neuro 432:550–563CrossRefGoogle Scholar
  33. Horridge GA (1966) Some recently discovered underwater vibration receptors in invertebrates. In: Barnes H (ed) Some contemporary studies in marine science. George Allen and Unwin Ltd, London, pp 395–405Google Scholar
  34. Horridge GA (1969) Statocysts of medusae and evolution of stereocilia. Tissue Cell 1:341–353CrossRefGoogle Scholar
  35. Horridge GA (1971) Primitive examples of gravity receptors and their evolution. In: Solon AG, Melvin JC (eds) Gravity and the organism. The University of Chicago Press, Chicago, pp 203–221Google Scholar
  36. Horridge GA, MacKay B (1962) Naked axons and symmetrical synapses in coelenterates. Quart J micr Sci 103:531–541Google Scholar
  37. Hündgen M, Biela C (1982) Fine structure of the touch-plate in the scyphomedusan Aurelia aurita. J Ultrastruct Res 80:178–184CrossRefGoogle Scholar
  38. Johnson G, King A, Gonclaves Honnicke M, Marrow J, Ludwig W (2008) X-ray diffraction contrast tomography: a novel technique for three-dimensional grain mapping of polycrystals. II. The combined case. J Appl Crystallogr 41:310–318Google Scholar
  39. Kawamura M, Ueno S, Iwanaga S, Oshiro N, Kubota S (2003) The relationship between fine rings in the statolith and growth of the cubomedusa Chiropsalmus quadrigus (Cnidaria: Cubozoa) form Okinawa Island, Japan. Plankton Biol Ecol 50:37–42Google Scholar
  40. Laska G, Hündgen M (1982) Morphologie und Ultrastruktur der Lichtsinnesorgane von Tripedalia cystophora Conant (Cnidaria, Cubozoa). Zool Jb Anat 108:107–123Google Scholar
  41. Laska G, Hündgen M (1984) die Ultrastruktur des neuromuskulären Systems der Medusen von Tripedalia cystophora und Carybdea marsupialis (Coelentata, Cubozoa). Zoomorphol 104:163–170CrossRefGoogle Scholar
  42. Laska-Mehnert G (1985) Cytologische Veränderungen während der Metamorphose des Cubopolypen Tripedalia cystophora (Cubozoa, Carybdeidae) in die Meduse. Helgoländer Meeresunters 39:129–164CrossRefGoogle Scholar
  43. Lowenstam HA, Weiner S (1989) On Biomineralization. Oxford University Press, New YorkGoogle Scholar
  44. Ludwig W, Schmidt S, Mejdal Lauridsen E, Poulsen HF (2008) X-ray diffraction contrast tomography: a novel technique for three-dimensional grain mapping of polycrystals. I. Direct beam case. J Appl Cryst 41:302–309CrossRefGoogle Scholar
  45. Ludwig W, Reischig P, King A, Herbig M, Lauridsen EM, Johnson G, Marrow TJ, Buffiere JY (2009) Three-dimensional grain mapping by X-ray diffraction contrast tomography and the use of Friedel pairs in diffraction data analysis. Rev Sci Instrum 80:033905–033909CrossRefGoogle Scholar
  46. Maas O (1903) Die Scyphomedusen der Siboga Expedition. In: Weber M (ed) Siboga-expeditie XI. EJ Brill, Leiden, pp 1–91Google Scholar
  47. Marques AC, Collins AG (2004) Cladistic analysis of Medusozoa and Cnidarian evolution. Invertebr Biol 123:23–42CrossRefGoogle Scholar
  48. Martin VJ (2004) Photoreceptors of cubozoan jellyfish. Hydrobiologia 530(531):135–144CrossRefGoogle Scholar
  49. Matsumoto GI (1995) Observations on the anatomy and behaviour of the cubozoan Carybdea rastonii Haacke. Mar Fresh Behav Physiol 26:139–148CrossRefGoogle Scholar
  50. Mirone A, Wilcke R, Hammersley A, Ferrero C (2009) PyHST—high speed tomographic reconstruction.
  51. Nakanishi N, Hartenstein V, Jacobs DK (2009) Development of the rhopalial nervous system in Aurelia sp. 1. (Cnidaria, Scyphozoa). Dev Genes Evol 219:301–317CrossRefGoogle Scholar
  52. Neues F, Beckmann F, Ziegler A, Epple M (2007) The application of synchrotron radiation-based micro-tomography in biomineralization. In: Baeuerlein E (ed) Biomineralisation: biological aspects and structure formation. Wiley-VCH, Weinheim, pp 369–380Google Scholar
  53. O’Connor M, Garm A, Nilsson D-E (2009) Structure and optics of the eyes of the box jellyfish Chiropsella bronzie. J Comp Physiol A 195:557–569CrossRefGoogle Scholar
  54. Péron F, Lesueur CA (1809) Histoire générale et particuliére de tout les animaux qui composent la famille des Méduses. Ann Mus Hist Nat Marseille 14:316–366Google Scholar
  55. Pollmanns D, Hündgen M (1981) Licht- und elektronenmikroskopische Untersuchung der Rhopalien von Aurelia aurita (Scyphozoa, Semaeostomae). Zool Jb Anat 105:508–525Google Scholar
  56. Prymak O, Tiemann H, Sötje I, Marxen J, Klocke A, Kahl-Nieke B, Beckmann F, Donath T, Epple M (2005) Application of synchrotron radiation-based computer microtomography (SRμCT) to biominerals: embryonic snails, statoliths of medusae, and human teeth. J Bio Inorg Chem 10:688–695CrossRefGoogle Scholar
  57. Rack A, Weitkamp T, Bauer Trabelsi S, Modregger P, Cecilia A, dos Santos Rolo T, Rack T, Haas D, Simon R, Heldele R, Schulz M, Mayzel B, Danilewsky AN, Waterstradt T, Diete W, Riesemeier H, Müller BR, Baumbach T (2009) The micro-imaging station of the TopoTomo beamline at the ANKA synchrotron light source. Nucl Instr Phys Res B 267(11):1978–1988CrossRefGoogle Scholar
  58. Ralph PM (1960) Tetraplatia, a coronate scyphomedusan. Proc Royal Soc London B 152:263–281CrossRefGoogle Scholar
  59. Robinson DG, Ehlers U, Herken R, Herrmann B, Mayer F, Schürmann F-W (1985) Präparationsmethodik in der Elektronenmikroskopie. Eine Einführung für Biologen und Mediziner. Springer, Berlin, pp 1–208Google Scholar
  60. Ruppert EE, Fox RS, Barnes RD (2004) Cnidaria. In: Ruppert EE, Fox RS, Barnes RD (eds) Invertebrate zoology—a functional evolutionary approach. Thomson Brooks/Cole, Belmont, pp 111–180Google Scholar
  61. Russell FS (1970) The medusae of the British Isles. J Mar Biol Ass UK 39:303–317CrossRefGoogle Scholar
  62. Salvini-Plawen L (1978) On the origin and evolution of the lower metazoa. Z Zool Syst Evol Forsch 16:40–88CrossRefGoogle Scholar
  63. Satterlie RA (2002) Neuronal control of swimming in jellyfish: a comparative story. Can J Zool 80:1654–1669CrossRefGoogle Scholar
  64. Satterlie RA, Nolan TG (2001) Why do cubomedusae have only four swim pacemakers? J Exp Biol 204:1413–1419Google Scholar
  65. Schäfer EA (1878) Observations o the nervous system of Aurelia aurita. Phil Trans Royal Soc London 169:563–575CrossRefGoogle Scholar
  66. Schewiakoff W (1889) Beiträge zur Kenntnis des Acalephenauges. Morphol Jb 15:21–60Google Scholar
  67. Schuchert P (1993) Phylogenetic analysis of the Cnidaria. Z Zool Syst Evol Forsch 31:161–173CrossRefGoogle Scholar
  68. Singla CL (1975) Statocysts of Hydromedusae. Cell Tissue Res 158:391–407CrossRefGoogle Scholar
  69. Skogh C, Garm A, Nilsson D-E, Ekström P (2006) Bilaterally symmetrical rhopalial nervous system of the box jellyfish Tripedalia cystophora. J Morphol 267:1391–1405CrossRefGoogle Scholar
  70. Southcott RV (1956) Studies on Australian Cubomedusae, including a new genus and species apparently harmful to man. Aust J Mar Freshw Res 7(2):254–280CrossRefGoogle Scholar
  71. Spangenberg DB (1968) Recent studies of strobilation in jellyfish. Oceanogr Mar Biol Ann Rev 6:231–247Google Scholar
  72. Spangenberg DB (1976) Intracellular statolith synthesis in Aurelia aurita. In: Watabe N, Wilbur KM (eds) The mechanisms of biomineralization in animals and plants. University of South Carolina Press, Columbia, pp 231–248Google Scholar
  73. Spangenberg D (1991) Rhopalium development in Aurelia aurita ephyrae. Hydrobiologia 216(217):45–49CrossRefGoogle Scholar
  74. Spangenberg DB, Beck CW (1968) Calcium sulfate dihydrate statoliths in Aurelia. Trans Am Microsc Soc 87(3):329–335CrossRefGoogle Scholar
  75. Spangenberg DB, Jernigan T, Philput C, Lowe B (1994) Graviceptor development in jellyfish ephyrae in space and on earth. Adv Space Res 14:317–325CrossRefGoogle Scholar
  76. Spangenberg DB, Coccaro E, Schwarte R, Lowe B (1996) Touch-plate and statolith formation in graviceptors of ephyrae which developed while weightless in space. Scan Microsc 10:875–888Google Scholar
  77. Stangl K, Salvini-Plawen LV, Holstein TW (2002) Staging and induction of medusa metamorphosis in Carybdea marsupialis (Cnidaria, Cubozoa). Vie Milieu 52:131–140Google Scholar
  78. Straehler-Pohl I (2009) Die Phylogenie der Rhopaliophora (Scyphozoa und Cubozoa) und die Paraphylie der “Rhizostomeae”. Doctoral Thesis University of Hamburg, Faculty of Mathematics, Informatics and Natural SciencesGoogle Scholar
  79. Straehler-Pohl I, Jarms G (2005) Life cycle of Carybdea marsupialis Linnaeus, 1758 (Cubozoa, Carybdeidae) reveals metamorphosis to be a modified strobilation. Mar Biol 147:1271–1277CrossRefGoogle Scholar
  80. Tadic D, Beckmann F, Donath T, Epple M (2004) Comparison of different methods for the preparation of porous bone substitution materials and structural investigations by synchrotron (micro)-computer tomography Mat-wiss u Werkstofftech 35:240–244Google Scholar
  81. Tanner BK (1976) X-ray diffraction topography. Pergammon, OxfordGoogle Scholar
  82. Tardent P, Schmid V (1972) Ultrastructure of mechanoreceptors of the polyp Coryne pintnere (Hydrozoa, Athecata). Exp Cell Res 72:265–275CrossRefGoogle Scholar
  83. Thiel ME (1936) Scyphomedusae. In: Bronns HG (ed) Klassen und Ordnungen des Tierreichs. Akademische Verlagsgesellschaft, LeipzigGoogle Scholar
  84. Thiel H (1966) The evolution of Scyphozoa. A review. In: Rees WJ (ed) The Cnidaria and their evolution Symp Zool Soc Lond, vol 16. Academic Press, London, pp 77–117Google Scholar
  85. Tiemann H, Jarms G (2010) Organ-like gonads, complex oocyte formation, and long-term spawning in Periphylla periphylla (Cnidaria, Scyphozoa, Coronatae). Mar Biol 157:527–535CrossRefGoogle Scholar
  86. Tiemann H, Sötje I, Jarms G, Paulmann C, Epple M, Hasse B (2002) Calcium sulphate hemihydrate in statoliths of deep-sea medusae. J Chem Soc, Dalton Trans 7:1266–1268Google Scholar
  87. Tiemann H, Sötje I, Becker A, Jarms G, Epple M (2006) Calcium sulfate hemihydrate (bassanite) statoliths in the cubozoan Carybdea sp. Zool Anz 245:13–17CrossRefGoogle Scholar
  88. Ueno S, Imai C, Mitsutani A (1995) Fine growth rings found in statolith of a cubomedusa Carybdea rastoni. J Plankton Res 17:1381–1384CrossRefGoogle Scholar
  89. Ueno S, Imai C, Mitsutani A (1997) Statolith formation and increment in Carybdea rastoni Haacke, 1886 (Scyphozoa: Cubomedusae): evidence of synchronization with semilunar rhythms. In: Proceedings of the 6th international conference on coelenterate biology, pp 491–496Google Scholar
  90. Vanhöffen E (1900) Über Tiefseemedusen und ihre Sinnesorgane. Zool Anz 23:277–279Google Scholar
  91. Vanhöffen E (1902) Die acraspeden Medusen der deutschen Tiefsee-Expedition 1898–1899. Deutschen-Tiefsee Expedition 1898–1899, Bd III 3:1–49Google Scholar
  92. Vinnikow YA, Aronove MZ, Kharkeevich TA, Tsirulis TP, Lavrowa EA, Natochin YV (1981) Structural and chemical features of the invertebrate otoliths. Z mikrosk-anat Forsch 95:127Google Scholar
  93. Werner B (1973) New investigations on systematics and evolution of the class Scyphozoa and the phylum Cnidaria. Pub Seto Mar Biol Lab 20:35–61Google Scholar
  94. Werner B (1975) Bau und Lebensgeschichte des Polypen von Tripedalia cystophora (Cubozoa, class, nov. Carybdeidae) und seine Bedeutung für die Evolution der Cnidaria. Helgoländer wiss Meeresunters 27:461–504CrossRefGoogle Scholar
  95. Werner B (1976) Die neue Cnidarierklasse Cubozoa. Verh Dtsch Zool Ges, p 230Google Scholar
  96. Werner B (1993) Stamm Cnidaria, Nesseltiere. In: Kaestner A (ed) Lehrbuch der speziellen Zoologie, vol I/2. Fischer, Stuttgart, pp 11–305Google Scholar
  97. Werner B, Cutress EC, Studebaker JP (1971) Life cycle of Tripedalia cystophora Conant (Cubomedusae). Nature 232:582–583CrossRefGoogle Scholar
  98. Wilt FH, Ettensohn CA (2007) The morphogenesis and biomineralization of the sea urchin larval skeleton. In: Bauerlein E (ed) Handbook of biomineralization: biological aspects and structure formation, vol 1. Wiley-VCH, pp, pp 183–210Google Scholar
  99. Yamaguchi M, Hartwick R (1980) Early life history of the Sea Wasp, Chironex fleckeri (Class Cubozoa). In: Tardent P, Tardent R (eds) Developmental and cellular biology of coelenterates. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 11–16Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • I. Sötje
    • 1
    Email author
  • F. Neues
    • 2
  • M. Epple
    • 2
  • W. Ludwig
    • 3
    • 4
  • A. Rack
    • 3
  • M. Gordon
    • 5
  • R. Boese
    • 2
  • H. Tiemann
    • 1
  1. 1.Biocenter Grindel and Zoological MuseumUniversity of HamburgHamburgGermany
  2. 2.Inorganic ChemistryUniversity of Duisburg-EssenEssenGermany
  3. 3.European Synchrotron Radiation Facility, BP220Grenoble CedexFrance
  4. 4.Institut National des Sciences Appliquées de LyonVilleurbanne CedexFrance
  5. 5.School of Marine and Tropical Biology, James Cook UniversitySmithfieldAustralia

Personalised recommendations