Marine Biology

, Volume 158, Issue 5, pp 1057–1073 | Cite as

Variability of albacore (Thunnus alalunga) diet in the Northeast Atlantic and Mediterranean Sea

  • Nicolas Goñi
  • John Logan
  • Haritz Arrizabalaga
  • Marc Jarry
  • Molly Lutcavage
Original Paper

Abstract

This study aims to describe the variability of albacore (Thunnus alalunga) diet in the Northeast Atlantic and Mediterranean Sea and to identify possible relationships between this variability and the features of different feeding areas, the behavior, and the energetic needs of albacore. Stomach contents from albacore caught in five zones of the Bay of Biscay and surrounding waters (n = 654) and three zones of the Mediterranean Sea (n = 152) were analyzed in terms of diet composition and stomach fullness. Carbon and nitrogen stable isotope and C/N ratios were measured for white muscle and liver from albacore in the Bay of Biscay (n = 41) and Mediterranean Sea (n = 60). Our results showed a spatial, seasonal, inter-annual, and size-related variability in the diet of albacore. Albacore diet varied by location in the Mediterranean Sea, with a particularly high proportion of cephalopods, and low δ15N values in the Tyrrhenian Sea. In the Northeast Atlantic, albacore consumed a higher proportion of crustaceans and a lower proportion of fishes in the most offshore sampling zone than inshore. The digestion states of the major prey reflected a diurnal feeding activity, indicative of feeding in deeper waters offshore, whereas on the continental slope, feeding probably occurred in surface waters at night. Important seasonal and inter-annual diet variability was observed in the southeast of the Bay of Biscay, where preferred albacore prey appeared to be anchovy (Engraulis encrasicolus). Stomach fullness was inversely related to body size, probably reflecting higher energetic needs for smaller individuals. Albacore from the Bay of Biscay had significantly lower δ13C and higher δ15N values compared with albacore from the Mediterranean Sea, indicative of regional baseline shifts, and trophic position and muscle lipid stores in albacore increased with body size.

References

  1. Aldanondo N, Cotano U, Tiepolo M, Boyra G, Irigoien X (2010) Growth and movement patterns of early juvenile European anchovy (Engraulis encrasicolus L.) in the Bay of Biscay based on otolith microstructure and chemistry. Fish Oceanogr 19(13):196–208CrossRefGoogle Scholar
  2. Aloncle H, Delaporte F (1974) Données nouvelles sur le germon Atlantique Thunnus alalunga Bonnaterre 1788 dans le Nord-Est Atlantique. 1ère Partie—Rythmes alimentaires et circadiens. Rev Travaux de l’Institut Pêches Maritimes 37 (4):475–572Google Scholar
  3. Arrizabalaga H, López Rodas V, Ortiz de Zárate V, Costas E, González-Garcés A (2002) Study on the migrations and stock structure of albacore (Thunnus alalunga) from the Atlantic Ocean and the Mediterranean Sea based on conventional tag release-recapture experiences. Col Vol Sci Pap ICCAT 54(5):1479–1494Google Scholar
  4. Bailey RS (1974) The life-history and biology of blue whiting in the Northeast Atlantic. Mar Res 1:29Google Scholar
  5. Bailey KN, Habib G (1982) Food of incidental fish species taken in the purse seine skipjack fishery, 1976–1981. Fisheries Research Division Occasional Publication (N.Z. Ministry of Agriculture and Fisheries). Data Series 6, 24 pGoogle Scholar
  6. Bard FX (1981) Le thon germon (Thunnus alalunga Bonaterre 1788) de l’Océan Atlantique. De la dynamique des populations à la stratégie démographique. Thèse de Doctorat d’État. Université Paris VI:333 ppGoogle Scholar
  7. Bello G (1999) Cephalopods in the diet of albacore, Thunnus alalunga, from the Adriatic Sea. J Molluscan Stud 65:233–240CrossRefGoogle Scholar
  8. Benzécri JP (1973) L’analyse des données, Tome 2: L’analyse des correspondances. Bordas, ParisGoogle Scholar
  9. Benzécri JP (1980) Pratique de l’Analyse de Données. Dunod, ParisGoogle Scholar
  10. Bertrand A (1999) Le système thon-environnement en Polynése Française: caractérisation de l’habitat pélagique, étude de la distribution et de la capturabilité des thons, par méthodes acoustiques et halieutiques. Thèse de l’Ecole Nationale Supérieure Agronomique de Rennes, 295 pGoogle Scholar
  11. Bertrand A, Bard FX, Josse E (2002) Tuna food habits related to the micronekton distribution in French Polynesia. Mar Biol 140:1023–1037CrossRefGoogle Scholar
  12. Bode A, Alvarez-Ossorio M, Cunha M, Garrido S, Peleteiro J, Porteiro C, Valdes L, Varela M (2007) Stable nitrogen isotope studies of the pelagic food web on the Atlantic shelf of the Iberian Peninsula. Prog Oceanogr 74:115–131CrossRefGoogle Scholar
  13. Boyra G, Cotano U, Martinez U, Peña M, Uriarte A (2008) JUVENA series review of the spatial distribution of anchovy juveniles in the Bay of Biscay. XI International Symposium on Oceanography of the Bay of Biscay, San Sebastián (Spain), April 2008Google Scholar
  14. Clarke MR (1986) A handbook for the identification of cephalopod beaks. Clarendon Press, OxfordGoogle Scholar
  15. Consoli P, Romeo T, Battaglia P, Castriota L, Esposito V, Andaloro F (2008) Feeding habits of the albacore tuna Thunnus alalunga (Perciformes, Scombridae) from central Mediterranean Sea. Mar Biol 155:113–120CrossRefGoogle Scholar
  16. Das K, Lepoint G, Loizeau V, Debacker V, Dauby P, Bouquegneau JM (2000) Tuna and dolphin associations in the Northeast Atlantic: evidence of different ecological niches from stable isotope and heavy metal measurements. Mar Pollut Bull 40(2):102–109Google Scholar
  17. de la Serna JM, Valeiras J, Alot E, Godoy D (2003) El atún blanco (Thunnus alalunga) del Mediterráneo Occidental. Col Vol Sci Pap ICCAT 55(1):160–165Google Scholar
  18. Estrada JA, Lutcavage M, Thorrold SR (2005) Diet and trophic position of Atlantic bluefin tuna (Thunnus thynnus) inferred from stable carbon and nitrogen isotope analysis. Mar Biol 147:37–45CrossRefGoogle Scholar
  19. Fréon P, Misund OA (1999) Dynamics of pelagic fish distribution and behaviour: effects on fisheries and stock assessment. Blackwell Science, LondonGoogle Scholar
  20. Froese R, Pauly D (eds) (2010) FishBase. World Wide Web electronic publication. http://www.fishbase.org, version (05/2010)
  21. Glaser SM (2009) Foraging ecology of North Pacific Albacore in the California Current System (CCS). California Sea Grant College Program, UC San Diego. Retrieved from: http://escholarship.org/uc/item/7130n4r0
  22. Goñi N (2008) Habitat et écologie trophique du germon (Thunnus alalunga) dans l’Atlantique Nord-Est: variabilité, implications sur la dynamique de la population. Thèse de Doctorat, Université de Pau et des Pays de l’Adour, 198 ppGoogle Scholar
  23. Goñi N, Arrizabalaga H (2010) Seasonal and interannual variability of fat content of juvenile albacore (Thunnus alalunga) and bluefin (Thunnus thynnus) tuna during their feeding migration to the Bay of Biscay. Prog Oceanogr 86(1–2):115–123CrossRefGoogle Scholar
  24. Goñi N, Arregui I, Lezama A, Arrizabalaga H, Moreno G (2009) Small scale vertical behaviour of juvenile albacore in relation to their biotic environment in the Bay of Biscay. In: Nielsen J, Arrizabalaga H, Fragoso N, Hobday A, Lutcavage M, Sibert J (eds) Tagging and tracking of marine animals with electronic devices (Reviews: Methods and Technologies in Fish Biology and Fisheries), vol 2. Springer, Berlin, pp 51–73Google Scholar
  25. Graham BS, Grubbs D, Holland K Popp BN (2007) A rapid ontogenetic shift in the diet of juvenile yellowfin tuna from Hawaii. Mar Biol 150(4):647–658Google Scholar
  26. Hastie TJ (1992) Generalized additive models. In: Chambers JM, Hastie TJ (eds) Statistical models in S. Chapman & Hall, London, pp 249–307Google Scholar
  27. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70Google Scholar
  28. Ibañez Artica M, Menendez de la Hoz M, Matallanas J, Ramos A, Sanchez F, San Millan MD (1989) Euskal Herriko arrainak. ISBN: 978-84-7728-128-3, Editorial Kriselu SA, Donostia (Spain)Google Scholar
  29. ICCAT (2008) Report of the 2007 ICCAT albacore stock assessment session (Madrid, Spain, July 5 to 12, 2007). Collect Vol Sci Pap ICCAT 62(3):697–815Google Scholar
  30. Irigoien X, Fiksen Ø, Cotano U, Uriarte A, Alvarez P, Arrizabalaga H, Boyra G, Santos M, Sagarminaga Y, Otheguy P, Etxebeste E, Zarauz L, Artetxe I, Motos L (2007) Could Biscay Bay anchovy recruit through a spatial loophole? Prog Oceanogr 74(2–3):132–148CrossRefGoogle Scholar
  31. Korsmeyer KE, Dewar H (2001) Tuna metabolism and energetics. In: Block BA, Stevens ED (eds) Tunas: physiology, ecology and evolution. Academic Press, San Diego, pp 35–78CrossRefGoogle Scholar
  32. Laval P (1978) The barrel of the pelagic amphipod Phronima sedentaria (Forsk.) (crustacea: hyperiidea). J Exp Mar Biol Ecol 33:187–211CrossRefGoogle Scholar
  33. Logan J (2009) Tracking diet and movement of Atlantic bluefin tuna (Thunnus thynnus) using carbon and nitrogen stable isotopes. PhD Thesis. University of New Hampshire, Durham, NHGoogle Scholar
  34. Logan J, Haas H, Deegan L, Gaines E (2006) Turnover rates of nitrogen stable isotopes in the salt marsh mummichog, Fundulus heteroclitus, following a laboratory diet switch. Oecologia 147:391–395CrossRefGoogle Scholar
  35. Logan J, Jardine T, Miller T, Bunn S, Cunjak R, Lutcavage M (2008) Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods. J Anim Ecol 77:838–846CrossRefGoogle Scholar
  36. Logan JM, Rodriguez-Marín E, Goñi N, Barreiro S, Arrizabalaga H, Golet W, Lutcavage ME (2011) Diet of young Atlantic bluefin tuna (Thunnus thynnus) in eastern and western Atlantic foraging grounds. Mar Biol 158:73–85CrossRefGoogle Scholar
  37. Marano G, De Zio V, Pastorelli AM, Rositani L, Ungaro N, Vlora A (1999) Synopsis on the biology and fisheries on Thunnus alalunga (Bonnaterre, 1788). Biol Mar Medit 6(2):192–214Google Scholar
  38. Mauchline J (1980) The biology of mysids and euphausiids. Adv Mar Biol 18:371–678Google Scholar
  39. Megalofonou P (2000) Age and growth of Mediterranean albacore. J Fish Biol 57:700–715. doi:10.1111/j.1095-8649.2000.tb00269.x CrossRefGoogle Scholar
  40. Olson RJ, Boggs CH (1986) Apex predation by yellowfin tuna (Thunnus albacares): independent estimates from gastric evacuation and stomach contents, bioenergetics, and cesium concentrations. Can J Fish Aquat Sci 43:1760–1775CrossRefGoogle Scholar
  41. Ortiz de Zarate V (1987) Datos sobre la alimentación del atún blanco (Thunnus alalunga B.) juvenil capturado en el Golfo de Vizcaya. Col Vol Sci Pap ICCAT 26(2):243–247Google Scholar
  42. Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293–320CrossRefGoogle Scholar
  43. Phillips DL, Eldridge PM (2006) Estimating the timing of diet shifts using stable isotopes. Oecologia 147:195–203CrossRefGoogle Scholar
  44. Pinnegar JK, Polunin NVC, Badalamenti F (2003) Long-term changes in the trophic level of western Mediterranean fishery and aquaculture landings. Can J Fish Aquat Sci 60:222–235CrossRefGoogle Scholar
  45. Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718CrossRefGoogle Scholar
  46. Pusineri C, Vasseur Y, Hassani S, Meynier L, Spitz J, Ridoux V (2005) Food and feeding ecology of juvenile albacore, Thunnus alalunga, off the Bay of Biscay: a case study. ICES J Mar Sci 62(1):116–122CrossRefGoogle Scholar
  47. Salman A, Karakulak S (2009) Cephalopods in the diet of albacore, Thunnus alalunga, from the Eastern Mediterranean. J Mar Biol Assoc UK 89(3):635–640CrossRefGoogle Scholar
  48. Santiago J (1993) A new length-mass relationship for the North Atlantic albacore. Col Vol Sci Pap ICCAT 40(2):316–319Google Scholar
  49. Santiago J (2004) Dinámica de la población de atún blanco (Thunnus alalunga Bonaterre 1788) del Atlántico Norte. PhD Thesis, Euskal Herriko Unibertsitatea, Bilbao, 320 ppGoogle Scholar
  50. Santiago J, Arrizabalaga H (2005) An integrated growth study for North Atlantic albacore (Thunnus alalunga Bonn. 1788). ICES J Mar Sci 62(4):740–749CrossRefGoogle Scholar
  51. Sara G, Sara R (2007) Feeding habits and trophic levels of bluefin tuna Thunnus thynnus of different size classes in the Mediterranean Sea. J Appl Ichthyol 23:122–127CrossRefGoogle Scholar
  52. Schmidt-Nielsen K (1984) Scaling: why is animal size so important? Cambridge University Press, Cambridge, 242 ppGoogle Scholar
  53. Soriguer F, Serna S, Valverde E, Hernando J, Martín-Reyes A, Soriguer M, Pareja A, Tinahones F, Esteva I (1997) Lipid, protein, and calorie content of different Atlantic and Mediterranean fish, shellfish, and molluscs commonly eaten in the South of Spain. Eur J Epidemiol 13:451–463CrossRefGoogle Scholar
  54. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL:http://www.R-project.org
  55. Todd CD, Laverack MS, Boxshall G (1996) Coastal Marine Zooplankton: a practical manual for students, 2nd edn. Cambridge University Press, Cambridge, 106 ppGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Nicolas Goñi
    • 1
  • John Logan
    • 2
  • Haritz Arrizabalaga
    • 1
  • Marc Jarry
    • 3
    • 4
  • Molly Lutcavage
    • 5
  1. 1.AZTI-TecnaliaPasaia (Gipuzkoa)Spain
  2. 2.Massachusetts Division of Marine FisheriesNew BedfordUSA
  3. 3.INRA, UMR 1224 EcobiopSaint Pée sur NivelleFrance
  4. 4.UPPA, UMR 1224 EcobiopPauFrance
  5. 5.Large Pelagics Research Center, Department of Natural Resources ConservationUniversity of Massachusetts AmherstGloucesterUSA

Personalised recommendations