Marine Biology

, Volume 158, Issue 5, pp 983–993 | Cite as

The sands of time: rediscovery of the genus Neozoanthus (Cnidaria: Hexacorallia) and evolutionary aspects of sand incrustation in brachycnemic zoanthids

  • James Davis Reimer
  • Mamiko Hirose
  • Yuka Irei
  • Masami Obuchi
  • Frederic Sinniger
Original Paper


The zoanthid family Neozoanthidae (Anthozoa: Hexacorallia: Zoantharia) was described in 1973 from Madagascar as a monogeneric and monotypic taxon, and never reported again in literature. In 2008–2010, numerous zoanthid specimens fitting the morphological description of Neozoanthus were collected in the Ryukyu Islands, Okinawa, Japan, and the Great Barrier Reef (GBR), Australia. Utilizing these specimens, this study re-examines the phylogenetic position of Neozoanthidae and analyzes the evolutionary history of sand incrustation in zoanthids through phylogenetic and ancestral state reconstruction analyses. Specimens were colonial, partially incrusted with large, irregular sand and debris, zooxanthellate, and found from the intertidal zone to depths of approximately 30 m. Phylogenetic results utilizing mitochondrial 16S ribosomal DNA and cytochrome oxidase subunit I sequences show the presence of two Neozoanthus species groups, one each from Japan and the GBR. Unexpectedly, the molecular results also show Neozoanthus to be very closely related to the genus Isaurus, which as a member of the family Zoanthidae, is not sand incrusted. These results suggest that during evolution zoanthids can acquire and lose the ability to incrust sand with relative rapidity.

Supplementary material

227_2011_1624_MOESM1_ESM.tif (759 kb)
Fig. S1Scanning electron microscope image of a cross-section of specimen MISE 539 showing incrusted sponge spicules (ss) with relatively intact mesoglea (m) and remains of locations of other embedded materials (rough areas surrounding mesoglea). Scale = 200 μm. (TIFF 758 kb)
227_2011_1624_MOESM2_ESM.eps (366 kb)
Fig. S2Maximum likelihood (ML) tree of cytochrome oxidase subunit 1 (COI) sequences for zoanthid specimens. Values at branches represent ML probabilities (>50%) and Bayesian posterior probabilites (>0.50), respectively. Sequences newly obtained in this study in bold. Sequences/species names from previous studies in regular font with GenBank Accession Number. For specimen information see Table S1. (EPS 365 kb)
227_2011_1624_MOESM3_ESM.doc (58 kb)
Supplementary material 3 (DOC 58 kb)


  1. Burnett WJ, Benzie JAH, Beardmore JA, Ryland JS (1997) Zoanthids (Anthozoa, Hexacorallia) from the Great Barrier Reef and Torres Strait, Australia: systematics, evolution and a key to species. Coral Reef 16:55–68CrossRefGoogle Scholar
  2. Ezaki Y (1997) The Permain coral Numidiaphyllum: new insights into anthozoans phylogeny and Triassic scleractinian origins. J Paleontol 40:1–14Google Scholar
  3. Fautin DG (2009) Hexacorallians of the world.
  4. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299Google Scholar
  5. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704CrossRefGoogle Scholar
  6. Haywick DW, Mueller EM (1997) Sediment retention in incrusting Palythoa spp.—a biological twist to a geological process. Coral Reef 16:39–46CrossRefGoogle Scholar
  7. Herberts C (1972) Etude systématique de quelques zoanthaires tempérés et tropicaux. Tethys Supp 3:69–156 (in French)Google Scholar
  8. Hirose M, Obuchi M, Irei Y, Fujii T, Reimer JD (in press) Timing of spawning and early development of Palythoa tuberculosa (Anthozoa, Zoantharia, Sphenopidae) in Okinawa, Japan. Biol BullGoogle Scholar
  9. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefGoogle Scholar
  10. Kurihara H (2008) Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar Ecol Prog Ser 373:275–284CrossRefGoogle Scholar
  11. Maddison WP, Maddison DR (2010) Mesquite: a modular system for evolutionary analysis. Version 2.74. Available from:
  12. Marshall CR, Raff EC, Raff RA (1994) Dollo’s law and the death and resurrection of genes. Proc Natl Acad Sci USA 91:12283–12287CrossRefGoogle Scholar
  13. Reimer JD, Ono S, Takishita K, Fujiwara Y, Tsukahara J (2004) Reconsidering Zoanthus spp. diversity: molecular evidence of conspecifity within four previously presumed species. Zool Sci 21:517–525CrossRefGoogle Scholar
  14. Reimer JD, Takishita K, Maruyama T (2006) Molecular identification of symbiotic dinoflagellates (Symbiodinium spp.) from Palythoa spp. (Anthozoa: Hexacorallia) in Japan. Coral Reef 25:521–527CrossRefGoogle Scholar
  15. Reimer JD, Hirano S, Fujiwara Y, Sinniger F, Maruyama T (2007) Morphological and molecular characterization of Abyssoanthus nankaiensis, a new family, new genus and new species of deep-sea zoanthid (Anthozoa: Hexacorallia: Zoantharia) from a northwest Pacific methane cold seep. Invertebr Systemat 21:255–262CrossRefGoogle Scholar
  16. Reimer JD, Ono S, Tsukahara J, Iwase F (2008) Molecular characterization of the zoanthid genus Isaurus (Anthozoa: Hexacorallia) and its zooxanthellae (Symbiodinium spp). Mar Biol 153:351–363CrossRefGoogle Scholar
  17. Reimer JD, Ishikawa SA, Hirose M (2010a) New records and molecular characterization of Acrozoanthus (Cnidaria: Anthozoa: Zoanthidae) from Taiwan. Mar Biodiv. doi:10.1007/s12526-010-0069-5
  18. Reimer JD, Nakachi S, Hirose M, Hirose E, Hashiguchi S (2010b) Using hydrofluoric acid for morphological investigations of zoanthids (Cnidaria: Anthozoa): a critical assessment of methodology and necessity. Mar Biotech 12:605–617CrossRefGoogle Scholar
  19. Rodriguez F, Oliver JL, Marin A, Medina JR (1990) The general stochiatic model of nucleotide substitution. J Theor Biol 142:485–501CrossRefGoogle Scholar
  20. Ronquist F, Huelsenbeck JP (2003) Bayesian phylogenetic inference under mixed models. Bioinformatics (Oxf) 19:1572–1574CrossRefGoogle Scholar
  21. Ryland JS (1997) Budding in Acrozoanthus Saville-Kent, 1893 (Anthozoa: Zoanthidea). In: den Hartog JC (ed) Proceedings of the 6th international conference of coelenterate biology. Nationaal Natuurhistorisch Museum, Leiden, pp 423–428Google Scholar
  22. Sinniger F, Pawlowski J (2009) The partial mitochondrial genome of Leiopathes glaberrima (Hexacorallia: Antipatharia) and the first report of the presence of an intron in COI in black corals. Galaxea 11:21–26CrossRefGoogle Scholar
  23. Sinniger F, Montoya-Burgos JI, Chevaldonné P, Pawlowski J (2005) Phylogeny of the order Zoantharia (Anthozoa, Hexacorallia) based on the mitochondrial ribosomal genes. Mar Biol 147:1121–1128CrossRefGoogle Scholar
  24. Sinniger F, Reimer JD, Pawlowski J (2010) The parazoanthidae DNA taxonomy: description of two new genera. Mar Biodivers 40:57–70CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • James Davis Reimer
    • 1
    • 2
  • Mamiko Hirose
    • 1
  • Yuka Irei
    • 3
  • Masami Obuchi
    • 1
  • Frederic Sinniger
    • 1
    • 4
  1. 1.Molecular Invertebrate Systematics and Ecology Laboratory, Rising Star Program, Trans-Disciplinary Organization for Subtropical Island StudiesUniversity of the RyukyusOkinawaJapan
  2. 2.Marine Biodiversity Research Program, Institute of BiogeosciencesJapan Agency for Marine-Earth Science and Technology (JAMSTEC)KanagawaJapan
  3. 3.Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and ScienceUniversity of the RyukyusOkinawaJapan
  4. 4.Molecular Ecology and Fisheries Genetics Laboratory, Environment Centre Wales Building, School of Biological SciencesBangor UniversityBangor, GwyneddUK

Personalised recommendations