Marine Biology

, Volume 158, Issue 5, pp 969–981 | Cite as

Factors affecting the detection distances of reef fish: implications for visual counts

  • Yves-Marie Bozec
  • Michel Kulbicki
  • Francis Laloë
  • Gérard Mou-Tham
  • Didier Gascuel
Original Paper


Detection patterns of coral reef fish were assessed from the meta-analysis of distance sampling surveys performed by visual census in New Caledonia and French Polynesia, from 1986 to 1999. From approximately 100,000 observations relating to 593 species, the frequency distributions of fish detection distances perpendicular to the transect line were compared according to species characteristics and sampling conditions. The shape and extension of these detection profiles varied markedly with fish size, shyness, and crypticity, indicating strong differences of detectability across species. Detection of very small and cryptic fish decreased strongly 1 m away from the line. Conversely, sightings of shy and large species were excessively low in the first meters due to diver avoidance prior to detection. The larger the fish, the greater the fleeing distance. Distance data underscore how inconsistent detectability biases across species and sites can affect the accuracy of visual censuses when assessing coral reef fish populations.


Fish Assemblage Reef Fish Distance Sampling Coral Reef Fish Distance Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to M. Harmelin-Vivien and N.V.C. Polunin for constructive advice on this work. We also thank M.A. MacNeil, L. Yakob, A.R. Harborne, S. Bejarano Chavarro, and the anonymous reviewers for helpful comments on the manuscript.

Supplementary material

227_2011_1623_MOESM1_ESM.doc (500 kb)
Supplementary material 1 (DOC 500 kb)
227_2011_1623_MOESM2_ESM.doc (96 kb)
Supplementary material 2 (DOC 95 kb)


  1. Ackerman JL, Bellwood DR (2000) Reef fish assemblages: a re-evaluation using enclosed rotenone stations. Mar Ecol Prog Ser 206:227–237. doi: 10.3354/meps206227 CrossRefGoogle Scholar
  2. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csàaki F (eds) Second international symposium on information theory. Akademiai Kiado, Budapest, pp 267–281Google Scholar
  3. Alldredge MW, Simons TR, Pollock KH (2007) Factors affecting aural detections of songbirds. Ecol Appl 17:948–955. doi: 10.1890/06-0685 CrossRefGoogle Scholar
  4. Anderson DR (2001) The need to get the basics right in wildlife field studies. Wildl Soc Bull 29:1294–1297Google Scholar
  5. Barlow J, Gerrodette T, Forcada J (2001) Factors affecting perpendicular sighting distances on shipboard line-transect surveys for cetaceans. J Cetacean Res Manage 3:201–212Google Scholar
  6. Benzécri JP (1992) Correspondence analysis handbook. Dekker, New YorkGoogle Scholar
  7. Bohnsack JA, Bannerot SP (1986) A stationary visual census technique for quantitatively assessing community structure of coral reef fishes. NOAA Technical Report NMFS 41:1–15Google Scholar
  8. Brock VE (1954) A preliminary report on a method of estimating reef fish populations. J Wildl Manage 18:297–308. doi: 10.2307/3797016 CrossRefGoogle Scholar
  9. Brock RE (1982) A critique of the visual census method for assessing coral reef fish populations. Bull Mar Sci 32:269–276Google Scholar
  10. Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (2001) Introduction to distance sampling: estimating abundance of biological populations. Oxford University Press, OxfordGoogle Scholar
  11. Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (2004) Advanced distance sampling: estimating abundance of biological populations. Oxford University Press, OxfordGoogle Scholar
  12. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practice information-theoretic approach, 2nd edn edn. Springer, New YorkGoogle Scholar
  13. Burnham KP, Anderson DR, Laake JL (1980) Estimation of density from line transect sampling of biological populations. Wildl Monogr 72:1–202Google Scholar
  14. Chapman CJ, Johnston ADF, Dunn JR, Creasey DJ (1974) Reactions of fish to sound generated by diver’s open-circuit underwater breathing apparatus. Mar Biol 27:357–366. doi: 10.1007/BF00394372 CrossRefGoogle Scholar
  15. Cheal AJ, Thompson AA (1997) Comparing visual counts of coral reef fish: implications of transect width and species selection. Mar Ecol Prog Ser 158:241–248. doi: 10.3354/meps158241 CrossRefGoogle Scholar
  16. Cole RG (1994) Abundance, size structure, and diver-oriented behaviour of three large benthic carnivorous fishes in a marine reserve in northeastern New Zealand. Biol Conserv 70:93–99. doi: 10.1016/0006-3207(94)90276-3 CrossRefGoogle Scholar
  17. Colvocoresses J, Acosta A (2007) A large-scale field comparison of strip transect and stationary point count methods for conducting length-based underwater visual surveys of reef fish populations. Fish Res 85:130–141. doi: 10.1016/j.fishres.2007.01.012 CrossRefGoogle Scholar
  18. Crawley MJ (2007) The R book. Wiley, ChichesterCrossRefGoogle Scholar
  19. Edgar GJ, Barrett NS, Morton AJ (2004) Biases associated with the use of underwater visual census techniques to quantify fish density and size-structure. J Exp Mar Biol Ecol 308:269–290. doi: 10.1016/j.jembe.2004.03.004 CrossRefGoogle Scholar
  20. English S, Wilkinson C, Baker V (1997) Survey manual for tropical marine resources. Australian Institute of Marine Science, TownsvilleGoogle Scholar
  21. Fowler AJ (1987) The development of sampling strategies for population studies of coral reef fishes. A case study. Coral Reefs 6:49–58. doi: 10.1007/BF00302212 CrossRefGoogle Scholar
  22. Greenacre M (1984) Theory and applications of correspondence analysis. Academic Press, LondonGoogle Scholar
  23. Greene LE, Alevizon WS (1989) Comparative accuracies of visual assessment methods for coral reef fishes. Bull Mar Sci 44:899–912Google Scholar
  24. Harmelin-Vivien ML, Harmelin JG, Chauvet C, Duval C, Galzin R, Lejeune P, Barnabé G, Blanc F, Chevalier R, Duclerc J, Lasserre G (1985) Evaluation visuelle des peuplements et populations de poissons: méthodes et problèmes. Rev Ecol (Terre Vie) 40:467–540Google Scholar
  25. Harvey E, Fletcher D, Shortis MR, Kendrick GA (2004) A comparison of underwater visual distance estimates made by scuba divers and stereo-video system: implications for underwater visual census of reef fish abundance. Mar Freshw Res 55:573–580. doi: 10.1071/MF03130 CrossRefGoogle Scholar
  26. Hill J, Wilkinson C (2004) Methods for ecological monitoring of coral reefs. Australian Institute of Marine Science, Townsville. Available at Accessed 11 June 2010
  27. Hodgson G, Kiene W, Mihaly J, Liebeler J, Shuman C, Maun L (2004) Reef Check instruction manual: a guide to reef check coral reef monitoring. Reef Check, Institute of the Environment, University of California at Los Angeles. Available at Accessed 11 June 2010
  28. Jennings S, Polunin NVC (1995) Biased underwater visual census biomass estimates for target species in tropical reef fisheries. J Fish Biol 47:733–736. doi: 10.1111/j.1095-8649.1995.tb01938.x CrossRefGoogle Scholar
  29. Kulbicki M (1988) Correlation between catch data from bottom longlines and fish censuses in the SW lagoon of New Caledonia. In: Proc 6th int coral reef symp 2:305–312Google Scholar
  30. Kulbicki M (1990) Comparisons between rotenone poisonings and visual counts for density and biomass estimates of coral reef fish populations. In: Proc ISRS Congr, Nouméa, pp 105–112Google Scholar
  31. Kulbicki M (1998) How the acquired behaviour of commercial reef fishes may influence the results obtained from visual censuses. J Exp Mar Biol Ecol 222:11–30. doi: 10.1016/S0022-0981(97)00133-0 CrossRefGoogle Scholar
  32. Kulbicki M, Sarramégna S (1999) Comparison of density estimates derived from strip transect and distance sampling for underwater visual censuses: a case study of Chaetodontidae and Pomacanthidae. Aquat Living Resour 12:315–325. doi: 10.1016/S0990-7440(99)00116-3 CrossRefGoogle Scholar
  33. Kulbicki M, Bargibant G, Menou J-L, Mou-Tham G, Thollot P, Wantiez L, Williams J (1994) Evaluation des ressources en poissons du lagon d’Ouvéa. 3ème partie: les poissons. Rapp Conv Sci Mer Biol Mar, ORSTOM, Nouméa, New CaledoniaGoogle Scholar
  34. Labrosse P, Kulbicki M, Ferraris J (2002) Underwater visual fish census surveys: proper use and implementation. Secretariat of the Pacific Community, Nouméa, New Caledonia. Available at Accessed 11 June 2010
  35. Lebart L (1994) Complementary use of correspondence analysis and cluster analysis. In: Greenacre MJ, Blasius J (eds) Correspondence analysis in the social sciences. Academic Press, London, pp 162–178Google Scholar
  36. Lebart L, Morineau A, Warwick KM (1984) Multivariate descriptive statistical analysis: correspondence analysis and related techniques for large matrices. Wiley, New YorkGoogle Scholar
  37. Letourneur Y, Kulbicki M, Labrosse P (2000) Fish stock assessment of the northern New Caledonian lagoons: 1-structure and stocks of coral reef fish communities. Aquat Living Resour 13:65–76. doi: 10.1016/S0990-7440(00)00145-5 CrossRefGoogle Scholar
  38. Lincoln Smith MP (1988) Effects of observer swimming speed on sample counts of temperate rocky reef fish assemblages. Mar Ecol Prog Ser 43:223–231. doi: 10.3354/meps043223 CrossRefGoogle Scholar
  39. Lincoln Smith MP (1989) Improving multispecies rocky reef fish censuses by counting different groups of species using different procedures. Environ Biol Fish 26:29–37. doi: 10.1007/BF00002473 CrossRefGoogle Scholar
  40. MacNeil MA, Tyler EHM, Fonnesbeck CJ, Rushton SP, Polunin NVC, Conroy MJ (2008) Accounting for detectability in reef-fish biodiversity estimates. Mar Ecol Prog Ser 367:249–260. doi: 10.3354/meps07580 CrossRefGoogle Scholar
  41. MacNeil MA, Graham NAJ, Polunin NVC, Kulbicki M, Galzin R, Harmelin-Vivien M, Rushton SP (2009) Hierarchical drivers of reef-fish metacommunity structure. Ecology 90:252–264. doi: 10.1890/07-0487.1 CrossRefGoogle Scholar
  42. Mapstone BD (1988) The determination of patterns in the abundance of Pomacentrus moluccensis Bleeker on the southern Great Barrier Reef. PhD thesis, University of Sydney, AustraliaGoogle Scholar
  43. Mapstone BD, Ayling AM (1998) An investigation of optimum methods and unit sizes for the visual estimation of abundances of some coral reef organisms. Great Barrier Reef Marine Park Authority Res Pub Ser 47, Townsville, QueenslandGoogle Scholar
  44. Marsh H, Sinclair DF (1989) Correcting for visibility bias in strip transect aerial surveys of aquatic fauna. J Wildl Manage 53:1017–1024. doi: 10.2307/3809604 CrossRefGoogle Scholar
  45. McCormick MI, Choat JH (1987) Estimating total abundance of a large temperate-reef fish using visual strip-transects. Mar Biol 96:469–478. doi: 10.1007/BF00397964 CrossRefGoogle Scholar
  46. Minte-Vera CV, de Moura RL, Francini-Filho RB (2008) Nested sampling: an improved visual-census technique for studying reef fish assemblages. Mar Ecol Prog Ser 367:283–293. doi: 10.3354/meps07511 CrossRefGoogle Scholar
  47. R Development Core Team (2010) R: a language and environment for statistical computing. Vienna, Austria. Accessed 11 June 2010
  48. Russell BC, Talbot FH, Anderson GRV, Goldman B (1978) Collection and sampling of reef fishes. In: Stoddart DR, Johannes RE (eds) Coral reefs: research methods. UNESCO, Norwich, pp 329–345Google Scholar
  49. Sale PF (1997) Visual census of fishes: how well do we see what is there? In: Proc 8th int coral reef symp 2:1435–1439Google Scholar
  50. Sale PF, Douglas WA (1981) Precision and accuracy of visual census techniques for fish assemblages on coral patch reefs. Environ Biol Fish 5:243–249. doi: 10.1007/BF00005761 CrossRefGoogle Scholar
  51. Sale PF, Sharp BJ (1983) Correction for bias in visual transect censuses of coral reef fishes. Coral Reefs 2:37–42. doi: 10.1007/BF00304730 CrossRefGoogle Scholar
  52. Samoilys MA, Carlos G (2000) Determining methods of underwater visual census for estimating the abundance of coral reef fishes. Environ Biol Fish 57:289–304. doi: 10.1023/A:1007679109359 CrossRefGoogle Scholar
  53. Schmidt MB, Gassner H (2006) Influence of scuba divers on the avoidance reaction of a dense vendace (Coregonus albula L.) population monitored by hydroacoustics. Fish Res 82:131–139. doi: 10.1016/j.fishres.2006.08.014 CrossRefGoogle Scholar
  54. St John J, Russ GR, Gladstone W (1990) Accuracy and bias of visual estimates of numbers, size structure and biomass of a coral reef fish. Mar Ecol Prog Ser 64:253–262. doi: 10.3354/meps064253 CrossRefGoogle Scholar
  55. Stanley DR, Wilson CA (1995) Effect of scuba-divers on fish density and target strength estimates from stationary dual-beam hydroacoustics. Trans Am Fish Soc 124:946–949. doi: 10.1577/1548-8659(1995)124<0946:EOSDOF>2.3.CO;2 CrossRefGoogle Scholar
  56. Stewart BD, Beukers JS (2000) Baited technique improves censuses of cryptic fish in complex habitats. Mar Ecol Prog Ser 197:259–272. doi: 10.3354/meps197259 CrossRefGoogle Scholar
  57. Thomas L, Buckland ST, Rexstad EA, Laake JL, Strindberg S, Hedley SL, Bishop JRB, Marques TA, Burnham KP (2010) Distance software: design and analysis of distance sampling surveys for estimating population size. J Appl Ecol 47:5–14. doi: 10.1111/j.1365-2664.2009.01737.x CrossRefGoogle Scholar
  58. Thompson AA, Mapstone BD (1997) Observer effects and training in underwater visual surveys of reef fishes. Mar Ecol Prog Ser 154:53–63. doi: 10.3354/meps154053 CrossRefGoogle Scholar
  59. Thresher RE, Gunn JS (1986) Comparative analysis of visual census techniques for highly mobile, reef associated piscivores (Carangidae). Environ Biol Fish 17:93–116. doi: 10.1007/BF00001740 CrossRefGoogle Scholar
  60. Ward-Paige C, Mills Flemming J, Lotze HK (2010) Overestimating fish counts by non-instantaneous visual censuses: consequences for population and community descriptions. PLoS ONE 5(7): e11722. doi: 10.1371/journal.pone.0011722
  61. Watson DL, Harvey ES (2007) Behaviour of temperate and sub-tropical reef fishes towards a stationary SCUBA diver. Mar Freshwat Behav Physiol 40:85–103. doi: 10.1080/10236240701393263 CrossRefGoogle Scholar
  62. Watson RA, Quinn TJ (1997) Performance of transect and point count underwater visual census methods. Ecol Model 104:103–112CrossRefGoogle Scholar
  63. Watson DL, Harvey ES, Anderson MJ, Kendrick GA (2005) A comparison of temperate reef fish assemblages recorded by three underwater stereo-video techniques. Mar Biol 148:415–425. doi: 10.1007/s00227-005-0090-6 CrossRefGoogle Scholar
  64. Williams ID, Walsh WJ, Tissot BN, Hallacher LE (2006) Impact of observers’ experience level on counts of fishes in underwater visual surveys. Mar Ecol Prog Ser 310:185–191. doi: 10.3354/meps310185 CrossRefGoogle Scholar
  65. Willis TJ (2001) Visual census methods underestimate density and diversity of cryptic reef fishes. J Fish Biol 59:1408–1411. doi: 10.1111/j.1095-8649.2001.tb00202.x CrossRefGoogle Scholar
  66. Willis TJ, Millar RB, Babcock RC (2000) Detection of spatial variability in relative density of fishes: comparison of visual census, angling, and baited underwater video. Mar Ecol Prog Ser 198:249–260. doi: 10.3354/meps198249 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Yves-Marie Bozec
    • 1
    • 6
  • Michel Kulbicki
    • 2
  • Francis Laloë
    • 3
  • Gérard Mou-Tham
    • 4
  • Didier Gascuel
    • 5
  1. 1.Marine Spatial Ecology Lab, School of BioSciencesUniversity of ExeterExeterUK
  2. 2.IRDUniversité de PerpignanPerpignan CedexFrance
  3. 3.UMR GRED, IRD/UPV-Montpellier 3, IRDMontpellier Cedex 5France
  4. 4.IRDNouméa Cedex, New CaledoniaFrance
  5. 5.Université Européenne de BretagneUMR INRA/Agrocampus Ouest “Ecologie et Santé des Ecosystèmes”Rennes CedexFrance
  6. 6.School of Biological SciencesUniversity of QueenslandSt. Lucia, BrisbaneAustralia

Personalised recommendations