Marine Biology

, Volume 158, Issue 2, pp 329–339 | Cite as

Ocean surface winds drive local-scale movements within long-distance migrations of seabirds

Original Paper

Abstract

Long-distance migration is a major part of the life cycle of many seabirds. The main processes driving local movements within those long-distance migratory movements are essentially unknown. Here, we studied detailed patterns of the movements with respect to distance from land of the most abundant seabird species migrating across the northernmost part of the Strait of Gibraltar and analysed how ocean surface winds influence those patterns. We did this by using visual and S-band radar surveys. Our results show that seabirds followed lines of travel that were located nearer the coast than randomly expected. Re-sampling techniques and comparison with additional data from ship-based counts corroborated this pattern, which was not substantially affected by the decrease in detection at distances of up to 3,000 m. Wind direction and speed covaried with local patterns of flight trajectories in a general manner. All the seabirds responded to headwinds by approaching the coast in proportion to the magnitude of wind intensity. Such a change in flight patterns could be a strategy to reduce the effect of headwinds, by approaching the coast where wind intensity was reduced by orographic factors. Under tailwind conditions, seabirds tended to fly further from the coast, profiting from increasing winds further from shore. Our results imply that modification of off-shore distance in relation to conditions of ocean surface winds may be an energetically advantageous strategy for migrating seabirds. Off-shore distances were also dependent on global and local migratory behaviour of different species, but not on flight type.

References

  1. Abelló P, Arcos JM, Gil de Sola L (2003) Geographical patterns of seabirds attendance to a research trawler along the Iberian Mediterranean coast. Sci Mar 67:69–75CrossRefGoogle Scholar
  2. Adams J, Flora S (2010) Correlating seabirds movements with ocean winds: linking satellite telemetry with ocean scatterometry. Mar Biol 157:915–929CrossRefGoogle Scholar
  3. Alerstam T (1976) Bird migration in relation to wind and topography. PhD thesis, University of Lund, SwedenGoogle Scholar
  4. Alerstam T, Gudmundsson GA, Larsson B (1993) Flight tracks and speeds of Antarctic and Atlantic seabirds: radar and optical instruments. Philos Trans R Soc Lond B 340:55–67CrossRefGoogle Scholar
  5. Apel JR (1988) Principles of ocean physics. Academic Press, LondonGoogle Scholar
  6. Arcos JM (2001) Foraging ecology of seabirds at sea: significance of commercial fisheries in the NW Mediterranean. PhD thesis, University of Barcelona, SpainGoogle Scholar
  7. Bruderer B, Steuri T, Baumgartner M (1995) Short-range high-precision surveillance of nocturnal migration and tracking of single targets. Isr J Zool 41:207–220Google Scholar
  8. Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (2001) Introduction to distance sampling. Estimating abundance of biological populations. Oxford University Press, OxfordGoogle Scholar
  9. Burnham KP, Anderson DR (2002) Model selection and multimodel inference. A practical information-theoretic approach. Springer, New YorkGoogle Scholar
  10. Christensen T, Hounisen JP, Clausager I, Petersen IK (2003) Visual and radar observations of birds in relation to collision risk at the Horns Rev offshore wind farm. Annual status report. National Environmental Research Institute, DenmarkGoogle Scholar
  11. Cramp S, Simmons KEL (1977) The birds of the Western Palearctic. Vol. I: Ostrich to ducks. Oxford University Press, OxfordGoogle Scholar
  12. Cramp S, Simmons KEL (1980) The birds of the Western Palearctic. Vol. II: Hawks to bustards. Oxford University Press, OxfordGoogle Scholar
  13. Desholm M (2003) How much do small-scale changes in flight direction increase overall migration distance? J Avian Biol 34:155–158CrossRefGoogle Scholar
  14. Desholm M, Fox AD, Beasley P, Kahlert J (2006) Remote techniques for counting and estimating the number of bird-wind turbine collisions at sea: a review. Ibis 148:76–89CrossRefGoogle Scholar
  15. Erni B, Liechti F, Bruderer B (2005) The role of wind in passerine autumn migration between Europe and Africa. Behav Ecol 16:732–740CrossRefGoogle Scholar
  16. Felicísimo AM, Muñoz J, González-Solís J (2008) Ocean surface winds drive dynamics of transoceanic aerial movements. PLoS One 3:1–7CrossRefGoogle Scholar
  17. González-Solís J, Croxall JP, Oro D, Ruiz X (2007) Transequatorial migration and mixing in the wintering areas in a pelagic seabird. Front Ecol Environ 5:297–301CrossRefGoogle Scholar
  18. González-Solís J, Felicísimo AM, Fox JW, Afanasyev V, Kolbeinsson Y, Muñoz J (2009) Influence of sea surface wind son shearwater migration detours. Mar Ecol Prog Ser 391:221–230CrossRefGoogle Scholar
  19. Good P (2006) Resampling methods: a practical guide to data analyses, 3rd edn. Birkhäuser, BostonGoogle Scholar
  20. Greene DF, Quesada M, Calogeropoulos C (2008) Dispersal of seeds by the tropical sea breeze. Ecology 89:118–125CrossRefGoogle Scholar
  21. Gregory PH (1973) The microbiology of the atmosphere, 2nd edn. Leonard Hill, AylesburyGoogle Scholar
  22. Gudmundsson GA, Alerstam T, Larsson B (1992) Radar observations of northbound migration of the Arctic Tern Sterna paradisaea, at the Antarctic Peninsula. Antarct Sci 4:163–170CrossRefGoogle Scholar
  23. Hashmi D (2000) Opportunities for Monitoring Seabirds and Cetaceans in the Strait of Gibraltar. In: Proceedings of the 5th Medmaravis symposium. Gozo, Malta, pp 176–191Google Scholar
  24. Hastie T, Tibshirani RJ (1990) Generalized additive models. Chapman & Hall, LondonGoogle Scholar
  25. Jiménez J, Navarrete J (2001) Estatus y fenología de las aves en Ceuta. Instituto de Estudios CeutíesGoogle Scholar
  26. Liechti F, Klaassen M, Bruderer B (2000) Predicting migratory flight altitudes by physiological migration models. Auk 117:205–214CrossRefGoogle Scholar
  27. Manly BFJ (2001) Randomization, bootstrap and Monte Carlo methods in biology, 2nd edn. Chapman and Hall/CRC, FloridaGoogle Scholar
  28. Marques FFC, Buckland ST (2004) Covariate models for the detection function. In: Buckland ST, Anderson DR, Burnham KP, Laake JK, Borschers DL, Thomas L (eds) Advanced distance sampling. Oxford University Press, Oxford, pp 31–47Google Scholar
  29. Marques FFC, Thomas L, Fancy SG, Buckland ST (2007) Improving estimates of bird density using multiple covariate distance sampling. Auk 124:1229–1243CrossRefGoogle Scholar
  30. Mateos M (2007) Patrones de atracción de las aves marinas a un arrastrero de investigación en el golfo de Cádiz, España. Trabajo para la evaluación del periodo de investigación. University of Cadiz, SpainGoogle Scholar
  31. Mateos M (2009) Radar technology applied to the study of seabird migration across the Strait of Gibraltar. PhD thesis, University of Cadiz, SpainGoogle Scholar
  32. Mateos M, Arroyo GM, Rodríguez A, Cuenca D, de la Cruz A (2010) Calibration of visually estimated distances to migrating seabirds with radar measurements. J Field Ornithol 81(3):302–309. doi:10.1111/j.1557-9263.2010.00286.x CrossRefGoogle Scholar
  33. Medina F, Galván M (2007) Imputación de datos: teoría y práctica. Naciones Unidas, División de Estadística y proyecciones económicas. Serie estudios estadísticos y prospectivos, vol 54. Santiago de ChileGoogle Scholar
  34. Meseguer J, Álvarez JC, Pérez A (2004) Formas de retrasar la entrada en pérdidas en las alas de las aves. Instituto Universitario de Microgravedad “Ignacio Da Riva”, Universidad Politécnica de Madrid. IDR/PA 0104Google Scholar
  35. Murray MD, Nicholls DG, Butcher E, Moors PJ, Walker K et al (2003) How Wandering Albatrosses use weather systems to fly long distances. 3. The contributions of Antarctic LOWS to eastward, southward and northward flight. Emu 103:111–120CrossRefGoogle Scholar
  36. Navarrete J (2008) Post-breeding migration of Cory’s shearwater Calonectris diomedea in Ceuta coastal waters. Boletin GIAM 31:2–6Google Scholar
  37. Paterson AM (1997) Las aves marinas de España y Portugal. Lynx Edicions, BarcelonaGoogle Scholar
  38. Pennycuick CJ (1987) Flight of Auks (Alcidae) and other northern seabirds compared with southern Procellariiformes: Ornithodolite observations. J Exp Biol 128:335–347Google Scholar
  39. Pennycuick CJ (1989) Bird flight performance: a practical calculation manual. Oxford University Press, OxfordGoogle Scholar
  40. Programa Migres (2009) Seguimiento de la migración de las aves en el Estrecho de Gibraltar: resultados del Programa Migres 2008. Migres, revista de ecología 1:83–101Google Scholar
  41. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  42. Ritchie SA, Rochester WA (2001) Wind-blown mosquitoes and introduction of Japanese encephalitis into Australia. Emerg Infect Dis 7:900–903CrossRefGoogle Scholar
  43. Schmaljohann H, Liechti F, Bächler E, Steuri T, Bruderer B (2008) Quantification of bird migration by radar—a detection probability problem. Ibis 150(2):342–355CrossRefGoogle Scholar
  44. Spear LB, Ainley DG (1997) Flight speed of seabirds in relation to wind speed and direction. Ibis 139:234–251CrossRefGoogle Scholar
  45. Tasker ML, Hope-Jones P, Dixon T, Blake BF (1984) Counting seabirds at sea from ships: a review of methods employed and a suggestion for a standardized approach. Auk 101:567–577Google Scholar
  46. Taylor SV, Cayan DR, Graham NE, Georgakakos KP (2008) Northerly surface winds over the eastern North Pacific Ocean in spring and summer. J Geophys Res 113:D02110. doi:10.1029/2006JD008053 CrossRefGoogle Scholar
  47. Thomas L, Laake JL, Strindberg S, Marques FFC, Buckland ST, Borchers DL, Anderson DR, Burnham KP, Hedley SL, Pollard JH, Bishop JRB, Marques TA (2006) Distance 5.0. Release 2. Research Unit for Wildlife Population Assessment, University of St. Andrews, UK. http://www.ruwpa.st-and.ac.uk/distance
  48. Warham J (1977) Wing loadings, wing shapes, and flight capabilities of Procellariiformes. N Z J Zool 4:73–83Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Biology Department, Faculty of Marine and Environmental SciencesUniversity of CadizPuerto Real, CadizSpain
  2. 2.Fundación Migres, Complejo Huerta GrandePelayo, Algeciras, CadizSpain

Personalised recommendations