Marine Biology

, Volume 157, Issue 12, pp 2703–2716 | Cite as

Long-term changes in phytoplankton phenology and community structure in the Bahía Blanca Estuary, Argentina

  • Valeria A. Guinder
  • Cecilia A. Popovich
  • Juan Carlos Molinero
  • Gerardo M. E. Perillo
Original Paper


The phytoplankton of the Bahía Blanca Estuary, Argentina, has been surveyed since 1978. Chlorophyll a, phytoplankton abundance, species composition and physico-chemical variables have been fortnightly recorded. From 1978 to 2002, a single winter–early spring diatom bloom has dominated the main pattern of phytoplankton interannual variability. Such pattern showed noticeable changes since 2006: the absence of the typical winter bloom and changes in phenology, together with the replacement of the dominant blooming species, i.e. Thalassiosira curviseriata, and the appearance of different blooming species, i.e. Cyclotella sp. and Thalassiosira minima. The new pattern showed relatively short-lived diatom blooms that spread throughout the year. In addition, shifts in the phytoplankton size structure toward small-sized diatoms, including the replacement of relatively large Thalassiosira spp. by small Cyclotella species and Chaetoceros species have been noticed. The changes in the phenology and composition of the phytoplankton are mainly attributed to warmer winters and the extremely dry weather conditions evidenced in recent years in the Bahía Blanca area. Changing climate has modified the hydrological features in the inner part of the estuary (i.e. higher temperatures and salinities) and potentially triggered the reorganization of the phytoplankton community. This long-term study provides evidence on species-specific and structural changes at the bottom of the pelagic food web likely related to the recent hydroclimatic conditions in a temperature estuary of the southwestern Atlantic.


Phytoplankton Phytoplankton Community Chlorophyll Concentration Phytoplankton Bloom Cyclotella 



We are grateful to U. Sommer, V. N. de Jonge, G. Plumley and S. Hawkins for their enriching comments and suggestions to improve this manuscript. V.A.G. acknowledges the hospitality and support of the research group of Prof. U. Sommer during her stay at the IfM-GEOMAR funded by the Ministerio de Ciencia, Técnica e Innovación Productiva (MINCYT) and the German Academic Exchange Service (DAAD). We also thank W. Melo for preparing the map of the estuary, and R. Astesuain, A. Astesuain and J. Arlengui for their participation in the field work and the analytical determination of chlorophyll. We thank M. Winder and two anonymous reviewers for providing helpful comments to improve the manuscript.


  1. Aberle N, Lengfellner K, Sommer U (2007) Spring bloom succession, grazing impact and herbivore selectivity of ciliate communities in response to winter warming. Oecologia 150:668–681CrossRefPubMedGoogle Scholar
  2. American Public Health Association (APHA) (1998) In: Clesceri LS, Greenberg AE, Easton AD (eds) Standard methods for examination of water and wastewater, 20th edn. American Public Health Association, Washington, DC, USAGoogle Scholar
  3. Barría de Cao MS, Beigt D, Piccolo C (2005) Temporal variability of diversity and biomass of tintinnids (Ciliophora) in a southwestern Atlantic temperate estuary. J Plankton Res 27(11):1103–1111Google Scholar
  4. Beaugrand G, Brander KM, Lindley JA, Souissi S, Reid PC (2003) Plankton effect on cod recruitment in the North Sea. Nature (Lond) 426:661–664CrossRefGoogle Scholar
  5. Benincà E, Huisman J, Heerkloss R et al (2008) Chaos in a long-term experiment with a plankton community. Nature 451:822–825CrossRefPubMedGoogle Scholar
  6. Berasategui AA, Hoffmeyer MS, Biancalana F, Fernandez Severini M, Menendez MC (2009) Temporal variation in abundance and fecundity of the invading copepod Eurytemora americana in Bahía Blanca Estuary during an unusual year. Estuar Coast Shelf Sci 85:82–88CrossRefGoogle Scholar
  7. Cloern JE (2001) Our evolving conceptual model of the coastal eutrophication problem. Mar Ecol Prog Ser 210:223–253CrossRefGoogle Scholar
  8. Cloern JE, Dufford R (2005) Phytoplankton community ecology: principles applied in San Francisco Bay. Mar Ecol Prog Ser 285:11–28CrossRefGoogle Scholar
  9. Cloern JE, Jassby AD, Thomson JK, Hieb KA (2007) A cold phase of the East Pacific triggers new phytoplankton blooms in San Francisco Bay. PNAS 104(47):18561–18565CrossRefPubMedGoogle Scholar
  10. Daufresne M, Böet P (2007) Climate change impacts on structure and diversity of fish communities in rivers. Glob Change Biol 13:2467–2478CrossRefGoogle Scholar
  11. Daufresne M, Lengfellner K, Sommer U (2009) Global warming benefits the small in aquatic ecosystems. PNAS 106(31):12788–12793CrossRefPubMedGoogle Scholar
  12. Diodato SL, Hoffmeyer MS (2008) Contribution of planktonic and detritic fractions to the natural diet of mesozooplankton in Bahía Blanca Estuary. Hydrobiol 614:83–90CrossRefGoogle Scholar
  13. Edwards M, Richardson A (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430:881–884CrossRefPubMedGoogle Scholar
  14. Freije RH, Marcovecchio J (2004) Oceanografía química. In: Piccolo MC, Hoffmeyer M (eds) El ecosistema del estuario de Bahía Blanca. Instituto Argentino de Oceanografía, Bahía Blanca, Argentina, pp 69–78Google Scholar
  15. Gayoso AM (1981) Estudio de las diatomeas del estuario de Bahía Blanca. Doctoral Dissertation, Universidad nacional de La Plata, Argentina, p 100Google Scholar
  16. Gayoso AM (1988) Seasonal variations of the phytoplankton from the most inner part of Bahía Blanca Estuary (Buenos Aires province, Argentine). Gayana Bot 45:241–247Google Scholar
  17. Gayoso AM (1989) Species of the Diatom Genus Thalassiosira from the coastal Zone of the South Atlantic (Argentina). Bot Mar 32:331–337CrossRefGoogle Scholar
  18. Gayoso AM (1998) Long-term phytoplankton studies in the Bahía Blanca Estuary, Argentina. ICES J Mar Sci 55:655–660CrossRefGoogle Scholar
  19. Gayoso AM (1999) Seasonal succession patterns of phytoplankton in the Bahía Blanca Estuary (Argentina). Bot Mar 42:367–375CrossRefGoogle Scholar
  20. Gebühr C, Wiltshire KH, Aberle N, van Beusekom JEE, Gerdts G (2009) Influence of nutrients, temperature, light and salinity on the occurrence of Paralia sulcata at Helgoland Roads, North Sea. Aquat Biol 7:185–197CrossRefGoogle Scholar
  21. Genner MJ, Sims DW, Southward AJ et al (2010) Body size-dependent responses of a marine fish assemblage to climate change and fishing over a century-long scale. Glob Change Biol 16:517–527CrossRefGoogle Scholar
  22. Gomez F, Souissi S (2007) Unusual diatoms linked to climatic events in the northeastern English channel. J Sea Res 58:283–290CrossRefGoogle Scholar
  23. Guinder VA, Popovich CA, Perillo GME (2009) Particulate suspended matter concentrations in the Bahía Blanca Estuary, Argentina: implication for the development of phytoplankton blooms. Estuar Coast Shelf Sci 85:157–165CrossRefGoogle Scholar
  24. Hays GC, Richardson AJ, Robinson C (2005) Climate change and marine plankton. Trends Ecol Evol 20:337–344CrossRefPubMedGoogle Scholar
  25. Hoffmeyer MS (2004) Decadal change in zooplankton seasonal succession in the Bahía Blanca Estuary, Argentina, following introduction of two zooplankton species. J Plankton Res 26:181–189CrossRefGoogle Scholar
  26. Hoffmeyer MS, Berasategui AA, Beigt D, Piccolo MC (2009) Environmental regulation of the estuarine copepods Acartia tonsa and Eurytemora americana during coexistence period. J Mar Biol Assoc UK 89(2):355–361CrossRefGoogle Scholar
  27. Huisman J, Weissing FJ (1999) Biodiversity of plankton by species oscillations and chaos. Nature 402:407–410CrossRefGoogle Scholar
  28. Jones MC (1990) The performance of kernel density functions in kernel distribution function estimation. Stat Probabil Lett 9:129–132CrossRefGoogle Scholar
  29. Kalnay E, Kanamitsu M, Kistler R, Collins W et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  30. Lange CB, Hasle GR, Syversten EE (1992) Seasonal cycle of diatoms in the Skagerrak, North Atlantic, with emphasis on the period 1980–1990. Sarsia 77:173–187Google Scholar
  31. Legendre L (1990) The significance of microalgae blooms for fisheries and for the export of particulate organic carbon in oceans. J Plankton Res 12(4):681–699CrossRefGoogle Scholar
  32. Litchman E, Klausmeier CA, Schofield OM, Falkowski PG (2007) The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecol Lett 10:1170–1181CrossRefPubMedGoogle Scholar
  33. Mauchline J (1998) The biology of calanoid copepods. Academic Press, San DiegoGoogle Scholar
  34. McQuoid M (2005) Influence of salinity on seasonal germination of resting stages and composition of microplankton on the Swedish west coast. Mar Ecol Prog Ser 289:151–163CrossRefGoogle Scholar
  35. Melo WD, Limbozzi F (2008) Geomorphology, hidrological systems and land use of Bahía Blanca Estuary reigon. In: Neves R, Baretta J, Mateus M (eds) Perspectives on integrated coastal zone management in South America. IST Press, Scientific Publishers, Lisboa, Portugal, pp 317–331Google Scholar
  36. Molinero JC, Anneville O, Souissi S, Balvay G, Gerdeaux D (2006) Anthropogenic and climate forcing on the long-term changes of planktonic rotifers in Lake Geneva, Europe. J Plankton Res 28:287–296CrossRefGoogle Scholar
  37. Morán XAG, López-Urrutia Á, Calvo-Díaz A, Li WKW (2009) Increasing importance of small phytoplankton in a warmer ocean. Global Change Biol 16:1137–1144CrossRefGoogle Scholar
  38. Nixon SW, Fulweiler RW, Buckley BA, Granger SL, Nowicki BL, Henry KM (2009) The impact of changing climate on phenology, productivity and benthic-pelagic coupling in Narragansett Bay. Estuar Coast Shelf Sci 82:1–18CrossRefGoogle Scholar
  39. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42CrossRefPubMedGoogle Scholar
  40. Perillo GME, Pierini JO, Pérez DE, Gómez EA (2001) Suspended sediment circulation in semienclosed docks Puerto Galván, Argentina. Terra et Aqua 83:1–8Google Scholar
  41. Peters RH (1983) The ecological implications of body size. Cambridge University Press, CambridgeGoogle Scholar
  42. Pettigrosso RE, Barría de Cao MS (2007) Ciliados planctónicos. In: Piccolo MC, Hoffmeyer M (eds) El ecosistema del estuario de Bahía Blanca. Instituto Argentino de Oceanografía, Bahía Blanca, Argentina, pp 1221–1231Google Scholar
  43. Pettigrosso RE, Popovich CA (2009) Phytoplankton-aloricate ciliate community in the Bahía Blanca Estuary (Argentina): seasonal patterns and trophic groups. Braz J Oceanogr 57(3):215–227CrossRefGoogle Scholar
  44. Popovich CA (1997) Autoecología de Thalassiosira curviseriata Takano (Bacillariophyceae) y su importancia en el entendimiento de la floración anual de diatomeas en el estuario de Bahía Blanca (Pcia. Bs. As., Argentina). PhD dissertation, Universidad Nacional del Sur, Bahía Blanca, ArgentinaGoogle Scholar
  45. Popovich CA (2004) Fitoplancton. In: Piccolo MC, Hoffmeyer M (eds) El ecosistema del estuario de Bahía Blanca. Instituto Argentino de Oceanografía, Bahía Blanca, Argentina, pp 91–100Google Scholar
  46. Popovich CA, Gayoso AM (1999) Effect of irradiance and temperature on the growth rate of Thalassiosira curviseriata Takano (Bacillariophyceae), a bloom diatom in Bahía Blanca estuary (Argentina). J Plankton Res 21(6):1101–1110CrossRefGoogle Scholar
  47. Popovich CA, Marcovecchio JE (2008) Spatial and temporal variability of phytoplankton and environmental factors in a temperate estuary of South America (Atlantic coast, Argentina). Cont Shelf Res 28:236–244CrossRefGoogle Scholar
  48. Popovich CA, Spetter CV, Marcovecchio JE, Freije RH (2008a) Dissolved nutrient availability during winter diatom bloom in a turbid and shallow estuary (Bahía Blanca, Argentina). J Coast Res 24:95–102CrossRefGoogle Scholar
  49. Popovich CA, Guinder VA, Pettigrosso RE (2008b) Composition and dynamics of phytoplankton and aloricate ciliate communities in the Bahía Blanca Estuary. In: Neves R, Baretta J, Mateus M (eds) Perspectives on integrated coastal zone management in South America. IST Press, Scientific Publishers, Lisboa, Portugal, pp 257–272Google Scholar
  50. Roelke D, Augustine S, Buyukates Y (2003) Fundamental predictability in multispecies competition: the influence of large disturbance. Am Nat 162:615–623CrossRefPubMedGoogle Scholar
  51. Ross R, Cox EJ, Karayeva NI et al (1979) An amended terminology for the siliceous components of the diatom cell. Nova Hedwigia Beih 64:513–533Google Scholar
  52. Rühland K, Paterson AM, Smol JP (2008) Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North American and European lakes. Glob Change Biol 14:2740–2754Google Scholar
  53. Shikata T, Nagasoe S, Matsubara T et al (2008) Factors influencing the initiation of blooms of the raphidophyte Heterosigma akashiwo and the diatom Skeletonema costatum in a port in Japan. Limnol Oceanogr 53(6):2503–2518Google Scholar
  54. Smayda TJ (1997) What is a bloom? A commentary. Limnol Oceanogr 42 (5 part 2):1132–1136Google Scholar
  55. Smayda TJ (1998) Patterns of variability characterizing marine phytoplankton, with examples from Narragansett Bay. Ices J Mar Sci 55:562–573CrossRefGoogle Scholar
  56. Sommer U (1993) Phytoplankton competition in Pluβsee: a field test of the resource-ratio hypothesis. Limnol Oceanogr 38(4):838–845CrossRefGoogle Scholar
  57. Sommer U, Lengfellner K (2008) Climate change and the timing, magnitude, and composition of the phytoplankton spring bloom. Glob Change Biol 14:1199–1208CrossRefGoogle Scholar
  58. Sommer U, Sommer F (2006) Cladocerans versus copepods: the cause of contrasting top-down controls on freshwater and marine phytoplankton. Oecologia 147:183–194CrossRefPubMedGoogle Scholar
  59. Sommer U, Stibor H (2002) Copepoda Tunicata: the role of three major mesozooplankton groups in pelagic food webs. Ecol Res 17:161–174CrossRefGoogle Scholar
  60. Thackeray SJ, Jones ID, Maberly SC (2008) Long-term change in the phenology of spring phytoplankton: species–specific responses to nutrient enrichment and climate change. J Ecol 96(3):523–535CrossRefGoogle Scholar
  61. Thomas CR (1997) Identifying marine phytoplankton. Academic Press, USAGoogle Scholar
  62. Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton, NJGoogle Scholar
  63. Wiltshire KH, Manly BFJ (2004) The warming trend at Helgoland Roads, North Sea: phytoplankton response. Helgol Mar Res 58:269–273CrossRefGoogle Scholar
  64. Wiltshire KH, Malzahn AM, Wirtz K et al (2008) Resilience of North Sea phytoplankton spring bloom dynamics: An ANALYSIS o long-term data at Helgoland Roads. Limnol Oceanogr 53:1294–1302Google Scholar
  65. Winder M, Cloern JE (2010) The annual cycles of phytoplankton biomass. Philos Trans R Soc B. doi: 10.1098/rstb.2010.0125 Google Scholar
  66. Winder M, Reuter JE, Schladow SG (2008) Lake warming favours small-sized planktonic diatom species. Proc R Soc B 276:427–443CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Valeria A. Guinder
    • 1
  • Cecilia A. Popovich
    • 2
  • Juan Carlos Molinero
    • 3
  • Gerardo M. E. Perillo
    • 1
    • 4
  1. 1.Instituto Argentino de Oceanografía (IADO-CONICET)Bahía BlancaArgentina
  2. 2.Laboratorio de Ficología y Micología, Departamento de Biología, Bioquímica y FarmaciaUniversidad Nacional del Sur (UNS)Bahía BlancaArgentina
  3. 3.Leibniz-Institut für Meereswissenschaften, FB3, Marine Ökologie, IFM-GEOMARKielGermany
  4. 4.Departamento de GeologíaUniversidad Nacional del Sur (UNS)Bahía BlancaArgentina

Personalised recommendations