Marine Biology

, Volume 157, Issue 11, pp 2435–2452

Comparing the effect of elevated pCO2 and temperature on the fertilization and early development of two species of oysters

  • Laura M. Parker
  • Pauline M. Ross
  • Wayne A. O’Connor
Original Paper

Abstract

This study compared the synergistic effects of elevated pCO2 and temperature on the early life history stages of two ecologically and economically important oysters: the Sydney rock oyster, Saccostrea glomerata and the Pacific oyster, Crassostrea gigas. Gametes, embryos, larvae and spat were exposed to four pCO2 (375, 600, 750, 1,000 µatm) and four temperature (18, 22, 26, 30°C) levels. At elevated pCO2 and suboptimal temperatures, there was a reduction in the fertilization success of gametes, a reduction in the development of embryos and size of larvae and spat and an increase in abnormal morphology of larvae. These effects varied between species and fertilization treatments with S. glomerata having greater sensitivity than C. gigas. In the absence of adaptation, C. gigas may become the more dominant species along the south-eastern coast of Australia, recruiting into estuaries currently dominated by the native S. glomerata.

References

  1. Anger K (1987) The DO threshold: a critical point in the larval development of decapod crustaceans. J Exp Mar Biol Ecol 108:15–30CrossRefGoogle Scholar
  2. Anil AC, Desai D, Khandeparker L (2001) Larval development and metamorphosis in Balanus amphritrite Darwin (Cirripedia; Thoracica): significance of food concentration, temperature and nucleic acids. J Exp Mar Biol Ecol 263:125–141CrossRefGoogle Scholar
  3. Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. PNAS 105:17442–17446CrossRefPubMedGoogle Scholar
  4. Bamber RN (1987) The effects of acidic sea water on young carpet-shell clams Venerupis decussata (L.) (Mollusca: Veneracea). J Exp Mar Biol Ecol 108:241–260CrossRefGoogle Scholar
  5. Bamber RN (1990) The effects of acidic seawater on three species of lamellibranch mollusc. J Exp Mar Biol Ecol 143(3):181–191CrossRefGoogle Scholar
  6. Bayne BL (2002) A physiological comparison between Pacific oysters Crassostrea gigas and Sydney rock oysters Saccostrea glomerata: food feeding and growth in a shared estuarine habitat. MEPS 232:163–178CrossRefGoogle Scholar
  7. Bijma J, Spero HJ, Lea DW (1999) Reassessing foraminiferal stable isotope geochemistry: impact of the oceanic carbonate system (experimental results). In: Fischer G, Wefer G (eds) Use of proxies in paleoceanography: examples from the south Atlantic. Springer, Berlin, pp 489–512Google Scholar
  8. Butler JN (1982) Carbon dioxide equilibria and their applications. Addison-Wesley Publishing Company, Massachusetts, pp 1–259Google Scholar
  9. Byrne M, Ho M, Selvakumaraswamy P, Nguyen HD, Dworjanyn SA, Davis AR (2009) Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios. P R Soc B 276:1183–1888CrossRefGoogle Scholar
  10. Calcagno JA, Lovrich GA, Thatje S, Nettelmann U, Anger K (2005) First year growth in the lithodids Lithodes santolla and Paralomis granulosa reared at different temperatures. J Sea Res 54(3):221–230CrossRefGoogle Scholar
  11. Carr RS, Biedenbach JM, Nipper M (2006) Influence of potentially confounding factors on sea urchin porewater toxicity tests. Arch Environ Con Tox 51:573–579CrossRefGoogle Scholar
  12. Carriker MR, Palmer RE (1979) Ultrastructure morphogenesis of prodissoconch and early dissoconch valves of the oyster Crassostrea virginica. Proc Natl Shellfish Assoc 69:103–128Google Scholar
  13. Christen R, Schackmann RW, Shapiro BM (1983) Metabolism of sea urchin sperm. Interrelationships between intracellular pH, ATPase activity, and mitochondrial respiration. J Biol Chem 258:5392–5399PubMedGoogle Scholar
  14. Cipollaro M, Corcale G, Esposito A, Ragucci E, Staiano N, Giordano GG, Pagano G (1986) Sublethal pH decrease may cause genetic damage to eukaryotic cell: a study on sea urchins and Salmonella typhimurium. Teratogen Carcin Mut 6:275–287CrossRefGoogle Scholar
  15. Clark D, Lamare M, Barker M (2009) Response of sea urchin pluteus larvae (Echinodermata: Echinoidea) to reduced seawater pH: a comparison among a tropical, temperate, and a polar species. Mar Biol 156:1125–1137CrossRefGoogle Scholar
  16. Collins S, Bell G (2004) Phenotypic consequences of 1000 generations of selection at elevated CO2 in a green alga. Nature 431:566–569CrossRefPubMedGoogle Scholar
  17. Connell JH (1961) The effects of competition, predation by Thais lapillus and other factors on natural populations of the barnacle Balanus balanoides. Ecol Monogr 31:61–104CrossRefGoogle Scholar
  18. Dinamani P (1973) Embryonic and larval development in the New Zealand rock oyster Crassostrea glomerata (Gould 1850). Veliger 15(4):295–299Google Scholar
  19. Dove MC, O’Connor WA (2007) Salinity and temperature tolerance of Sydney rock oysters Saccostrea glomerata during early ontogeny (Gould 1850). J Shellfish Res 26(4):939–947CrossRefGoogle Scholar
  20. Dove MC, Sammut J (2007a) Histological and feeding response of Sydney rock oysters, Saccostrea glomerata, to acid sulfate soil outflows. J Shellfish Res 26(2):509–518CrossRefGoogle Scholar
  21. Dove MC, Sammut J (2007b) Impacts of estuarine acidification on survival and growth of Sydney rock oysters Saccostrea glomerata (Gould 1850). J Shellfish Res 26(2):519–527CrossRefGoogle Scholar
  22. Dupont S, Havenhand J, Thorndyke W, Peck L, Thorndyke M (2008) Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis. MEPS 373:285–294CrossRefGoogle Scholar
  23. Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366CrossRefPubMedGoogle Scholar
  24. Fine M, Tchernov D (2007) Scleractinian coral species survive and recover from decalcification. Science 315:1811CrossRefPubMedGoogle Scholar
  25. Fujisawa H (1989) Differences in temperature dependence of early development of the sea urchins with different growing seasons. Biol Bull 176:96–102CrossRefGoogle Scholar
  26. Gao K, Aruga Y, Asada K, Ishihara T, Akano T, Kiyohara M (1993) Calcification in the articulated coralline alga Corallina pulilifera with special reference to the effect of elevated CO2 concentration. Mar Biol 117:129–132CrossRefGoogle Scholar
  27. Gazeau F, Quiblier C, Jansen JM, Gattuso J-P, Middelburg JJ, Heip C, Carlo HR (2007) Impact of elevated CO2 on shellfish calcification. Geophys Res Lett 34 (7)Google Scholar
  28. Gooding RA, Harley CDG, Tang E (2009) Elevated water temperature and carbon dioxide concentration increase the growth of a keystone echinoderm. Proc Natl Acad Sci 106(23):9316–9321CrossRefPubMedGoogle Scholar
  29. Gosselin LA, Qian PY (1997) Juvenile mortality in benthic marine invertebrates. MEPS 146:265–282CrossRefGoogle Scholar
  30. Grainger JL, Winkler MM, Steinhardt RA (1979) Intracellular pH controls protein synthesis rate in the sea urchin egg and early embryo. J Dev Biol 68:396–406CrossRefGoogle Scholar
  31. Gran G (1952) Determination of the equivalence point in potentiometric titrations–Part II. Analyst 77:661–671CrossRefGoogle Scholar
  32. Hagström BE, Hagström B (1959) The effect of decreased and increased temperatures on fertilization. Exp Cell Res 16:174–183CrossRefPubMedGoogle Scholar
  33. Havenhand JN, Schlegel P (2009) Near-future levels of ocean acidification do not affect sperm motility and fertilization kinetics in the oyster Crassostrea gigas. Biogeosci Discuss 6(2):4573–4586CrossRefGoogle Scholar
  34. Havenhand JN, Buttler FR, Thorndyke MC, Williamson JE (2008) Near-future levels of elevated pCO2 reduce fertilization success in a sea urchin. Curr Biol 18(15):R651–R652CrossRefPubMedGoogle Scholar
  35. Hayakaze E, Tanabe K (1999) Early larval shell development in mytilid bivalve Mytilus galloprovincialis. Venus 58:119–127Google Scholar
  36. Heasman MP, Goard L, Diemar J, Callinan RB (2000) Improved early survival of molluscs: Sydney rock oyster (Saccostrea glomerata). NSW Fisheries Final Report Series, Aquaculture CRC Project A.2.1 No. 29: ISSN 1440-3544Google Scholar
  37. His E, Robert R, Dinet A (1989) Combined effects of temperature and salinity on fed and starved larvae of the Mediterranean mussel Mytilus galloprovincialis and the Japanese oyster Crassostrea gigas. Mar Biol 100:455–463CrossRefGoogle Scholar
  38. His E, Seaman MNL, Beiras R (1997) A simplification of the bivalve embryogenesis and larval development bioassay method for water quality assessment. Water Res 31:351–355CrossRefGoogle Scholar
  39. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742CrossRefPubMedGoogle Scholar
  40. Houghton JT, Filho LGM, Callander BH, Harris N, Kattenberg A, Maskell K (1996) Climate change 1995. The science of climate change. Contribution of working group II to the second assessment report of the intergovernmental panel on climate change (IPCC). Cambridge University Press, New York, pp 19–24Google Scholar
  41. Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (2001) Climate change 2001: The scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change (IPCC). Cambridge University Press, New York, USA, pp 1–83Google Scholar
  42. Hunt HL, Scheibling RE (1997) Role of early post-settlement mortality in recruitment of benthic marine invertebrates. Mar Ecol-Prog Ser 155:269–301CrossRefGoogle Scholar
  43. Jansen JM, Pronker AE, Kube S, Sokolowski A, Sola JC, Marquiegui MA, Schiedek D, Bonga SW, Wolowicz M, Hummel H (2007) Geographic and seasonal patterns and limits on the adaptive response to temperature of European Mytilus spp. and Macoma balthica populations. Oecologia 154:23–34CrossRefPubMedGoogle Scholar
  44. Jokiel PL, Rodgers KS, Kuffner IB, Andersson AJ, Cox EF, Mackenzie FT (2008) Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs 27:473–483CrossRefGoogle Scholar
  45. Kikkawa T, Ishimatsu A, Kita J (2003) Acute CO2 tolerance during the early developmental stages of four marine teleosts. Environ Toxicol 18(6):375–382Google Scholar
  46. Kurihara H, Ishimatsu A (2008) Effects of high CO2 seawater on the copepod (Acartia tsuensis) through all life stages and subsequent generations. Mar Pollut Bull 56(6):1086–1090CrossRefPubMedGoogle Scholar
  47. Kurihara H, Shirayama Y (2004) Effects of increased atmospheric CO2 on sea urchin early development. Mar Ecol-Prog Ser 274:161–169CrossRefGoogle Scholar
  48. Kurihara H, Shimode S, Shirayama Y (2004) Sub-lethal effects of elevated concentration of CO2 on planktonic copepods and sea urchins. J Oceanography 60:743–750CrossRefGoogle Scholar
  49. Kurihara H, Kato S, Ishimatsu A (2007) Effects of increased seawater pCO2 on early development of the oyster Crassostrea gigas. Aquat Biol 1:91–98CrossRefGoogle Scholar
  50. Kurihara H, Asai T, Kato S, Ishimatsu A (2008) Effects of elevated pCO2 on early development in the mussel Mytilus galloprovincialis. Aquat Biol 4:225–233CrossRefGoogle Scholar
  51. Lamprell K, Healy J (1998) Bivalves of Australia Vol 2. Backhuys Publishers, Leiden, The Netherlands: 288 ppGoogle Scholar
  52. Langdon C, Takahashi T, Sweeney C, Chipman D, Goddard J, Marubini F, Aceves H, Barnett H, Atkinson MJ (2000) Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biogeochem Cy 14:639–654CrossRefGoogle Scholar
  53. Langenbuch M, Pörtner HO (2004) High sensitivity to chronically elevated CO2 levels in a eurybathic marine sipunculid. Aquat Toxicol 70:743–750CrossRefGoogle Scholar
  54. Langenbuch M, Bock C, Leibfritz D, Pörtner HO (2006) Effects of environmental hypercapnia on animal physiology: a 13C NMR study of protein synthesis rates in the marine invertebrate Sipunculus nudus. Comp Biochem Phys 144:479–484CrossRefGoogle Scholar
  55. Leclercq N, Gattuso J-P, Jaubert J (2000) CO2 partial pressure controls the calcification rate of a coral community. Global Change Biol 6:329–334CrossRefGoogle Scholar
  56. Lewis E, Wallace DWR (1998) Program developed for CO2 system calculations. ORNL/CDIAC-105. Carbon dioxide information analysis center, Oak Ridge National Laboratory. US Department of Energy, Oak Ridge, TennesseeGoogle Scholar
  57. Martin S, Gattuso J-P (2009) Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Global Change Biol 15:2089–2100CrossRefGoogle Scholar
  58. Mayor DJ, Matthews C, Cook K, Zuur AF, Hay S (2007) CO2-induced acidification affects hatching success in Calanus finmarchicus. Mar Ecol-Prog Ser 350:91–97CrossRefGoogle Scholar
  59. Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RN (1973) Measurement of apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907CrossRefGoogle Scholar
  60. Melzner F, Göbel S, Langenbuch M, Gutowska MA, Pörtner HO, Lucassen M (2009) Swimming performance in Atlantic Cod (Gadus morhua) following long-term (4–12 months) acclimation to elevated seawater pCO2. Aquat Toxicol 92:30–37CrossRefPubMedGoogle Scholar
  61. Metzger R, Sartoris FJ, Langenbuch M, Pörtner HO (2007) Influence of elevated CO2 concentrations on thermal tolerance of the edible crab Cancer pagurus. J Therm Biol 32:144–151CrossRefGoogle Scholar
  62. Michaelidis B, Ouzounts C, Paleras A, Pörtner H-O (2005) Effects of long-term moderate hypercapnia on acid–base balance and growth rate in marine mussels Mytilus galloprovincialis. MEPS 293:109–118CrossRefGoogle Scholar
  63. Mitchell I, Jones A, Crawford C (2000) Distribution of feral Pacific oysters and environmental conditions. Marine Research Laboratories–Tasmanian Aquaculture and Fisheries Institute, University of TasmaniaGoogle Scholar
  64. Munday PL, Donelson JM, Dixson DL, Endo GGK (2009a) Effects of ocean acidification on the early life history of a tropical marine fish. Proc R Soc Lond Biol 276:3275–3283CrossRefGoogle Scholar
  65. Munday PL, Dixson DL, Donelson JM, Jones GP, Pratchett MS, Devitsina GV, Døving KB (2009b) Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. PNAS 106:1848–1852CrossRefPubMedGoogle Scholar
  66. Nell JA (1993) Farming the Sydney Rock Oyster (Saccostrea commercialis) in Australia. Rev Fish Sci 1:97–120CrossRefGoogle Scholar
  67. Nell JA, Sheridan AK, Smith IR (1996) Progress in a Sydney rock oyster, Saccostrea commercialis (Iredale and Roughley), breeding program. Aquaculture 144:295–302CrossRefGoogle Scholar
  68. O’Connor WA, Lawler NF (2004) Salinity and temperature tolerance of embryos and juveniles of the pearl oyster, Pinctada imbricata Röding. Aquaculture 229:493–506CrossRefGoogle Scholar
  69. O’Connor WA, Dove MC, Finn B, O’Connor SJ (2008) Manual for hatchery production of Sydney rock oysters (Saccostrea glomerata). Final report to Fisheries Research and Development Corporation, Deakin, ACT, Australia. New South Wales Department of Primary Industries–Fisheries Research Report Series, 20: 55 pGoogle Scholar
  70. Orr JC, Fabry J, Aumont O (2005) Anthropogenic ocean acidifcation over the 21st century and its impact on calcifying organisms. Nature 437(29):681–686CrossRefPubMedGoogle Scholar
  71. Pagano G, Cipollaro M, Corsale G, Esposoti A, Ragucci E, Giordano GG (1985a) pH-Induced changes in mitotic and developmental patterns in sea urchin embryogenesis. I. Exposure of embryos. Teratogen Carcin Mut 5:101–112CrossRefGoogle Scholar
  72. Pagano G, Cipollaro M, Corsale G, Esposoti A, Ragucci E, Giordano GG (1985b) pH-Induced changes in mitotic and developmental patterns in sea urchin embryogenesis. II. Exposure of sperm. Teratogen Carcin Mut 5:113–121CrossRefGoogle Scholar
  73. Parker LM, Ross PM, O’Connor WA (2009) The effect of elevated pCO2 and temperature on the fertilization and embryonic development of the Sydney rock oyster Saccostrea glomerata (Gould 1850). Global Change Biol 15:2123–2136CrossRefGoogle Scholar
  74. Pörtner HO, Reipschläger A, Heisler N (1998) Acid–base regulation, metabolism and energetics in Sipunculus nudus as a function of ambient carbon dioxide level. J Exp Biol 201:43–54PubMedGoogle Scholar
  75. Reynaud S, Leclercq N, Romaine-Lioud S, Ferrier C, Jaubert J, Gattuso J-P (2003) Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Global Change Biol 9:1660–1668CrossRefGoogle Scholar
  76. Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe R, Morel FMM (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–367CrossRefPubMedGoogle Scholar
  77. Ross PM, Minchinton TE, Ponder WF (2009) The ecology of molluscs in Australian saltmarshes. Saltmarshes of Australia, Neil Saintilan EditionGoogle Scholar
  78. Runnström S (1927) b e drie thermopathie der fortpflanzung und entwicklung mariner tiere. Berg Mus Arb Naturvid 2:1–67Google Scholar
  79. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. WH Freeman and Company, New York, 3rd edn 887 ppGoogle Scholar
  80. Solomon S, Qin D, Manning M, Alley RB, Berntsen T, Bindoff NL, Chen Z, Chidthaisong A, Gregory JM, Hegerl GC, Heimann M, et al. (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge UK, and New York, USAGoogle Scholar
  81. Stenzel HB (1964) Oysters: composition of the larval shell. Science 145:155–156CrossRefPubMedGoogle Scholar
  82. Strathmann RR (1987) Larval feeding. In: Giese AC, Pearse JS, Pearse VB (eds) Reproduction of marine invertebrates, vol 9. Blackwell Scientific, Palo Alto, pp 465–550Google Scholar
  83. Underwood AJ (1997) Ecological experiments: their logical design and interpretation using analysis of variance. Cambridge University Press, CambridgeGoogle Scholar
  84. Waller TR (1981) Functional morphology and development of veliger larvae of the European oyster, Ostrea edulis Linné. Smithson Contrib Zool 328:1–70Google Scholar
  85. Watson S-A, Southgate PC, Tyler PA, Peck LS (2009) Early larval development of the Sydney rock oyster Saccostrea glomerata under near-future predictions of CO2-driven ocean acidification. J Shellfish Res 28:431–437CrossRefGoogle Scholar
  86. Weiss IM, Tuross N, Addadi L, Weiner S (2002) Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. J Exp Zool 293:478–491CrossRefPubMedGoogle Scholar
  87. White I (2002) Safeguarding environmental conditions for oyster cultivation in New South Wales. Report (No. 010801) for the NSW Healthy Rivers Commission. 83 pGoogle Scholar
  88. Winer BJ, Brown DR, Michels KM (1991) Statistical principles in experimental design. McGraw Hill, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Laura M. Parker
    • 1
  • Pauline M. Ross
    • 1
  • Wayne A. O’Connor
    • 2
  1. 1.School of Natural Sciences, Ecology and Environment Research Group, College of Health and ScienceUniversity of Western SydneySydneyAustralia
  2. 2.Industry and Investment NSW Port Stephens Fisheries InstituteTaylors BeachAustralia

Personalised recommendations