Marine Biology

, Volume 157, Issue 11, pp 2427–2434 | Cite as

Providing a common diet to different marine decapods does not standardize the fatty acid profiles of their larvae: a warning sign for experimentation using invertebrate larvae produced in captivity

  • Ricardo CaladoEmail author
  • Tânia Pimentel
  • Daniel F. R. Cleary
  • Gisela Dionísio
  • Cristóvão Nunes
  • Teresa Lopes da Silva
  • Maria Teresa Dinis
  • Alberto Reis
Original Paper


Larval decapods are commonly produced in captivity and employed in experiments to evaluate interspecific physiological and biochemical differences. Currently, it is still unknown if different decapod species provided a common diet and exposed to identical abiotic conditions produce newly hatched larvae (NHL) with similar fatty acid (FA) profiles. This study analyzed the FA composition of NHL from five marine shrimp species (Lysmata amboinensis, L. boggessi, L. debelius, L. seticaudata and Rhynchocinetes durbanensis) fed a common diet and stocked at constant temperature. FA profiles of NHL differed significantly within and among genera. NHL from species unable to molt from zoea I to zoea II in the absence of food (L. amboinensis, L. debelius and R. durbanensis) displayed the lowest FA contents. Researchers must be aware that providing a common diet to different species, even if closely related, may not standardize the FA profile of NHL produced in captivity.


Fatty Acid Profile Highly Unsaturated Fatty Acid Shrimp Species Decapod Species Yolk Reserve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Fundação para a Ciência e a Tecnologia (scholarship SFRH/BPD/18009/2004) from the Portuguese government for their financial support. We also thank two anonymous reviewers for their valuable comments, which helped to improve the final manuscript.


  1. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46CrossRefGoogle Scholar
  2. Baeza JA, Schubart CD, Zillner P, Fuentes S, Bauer RT (2009) Molecular phylogeny of shrimps from the genus Lysmata (Caridea: Hippolytidae): the evolutionary origins of protandric simultaneous hermaphroditism and social monogamy. Biol J Linn Soc 96: 415-424. doi: 10.1111/j.1095-8312.2008.01133.x
  3. Bauer RT (2000) Simultaneous hermaphroditism in caridean shrimps: a unique and puzzling sexual system in the Decapoda. J Crustac Biol 20:116–128Google Scholar
  4. Bauer RT (2004) Remarkable shrimps: natural history and adaptations of the carideans. University of Okalahoma Press, NormanGoogle Scholar
  5. Bauer RT (2006) Same sexual system but variable sociobiology: evolution of protandric simultaneous hermaphroditism in Lysmata shrimps. Integr Comp Biol 46:430–438. doi: 10.1093/icb/icj036 CrossRefGoogle Scholar
  6. Calado R (2008) Marine ornamental shrimp: biology, aquaculture and conservation. Blackwell, OxfordGoogle Scholar
  7. Calado R, Narciso L, Araujo R, Lin J (2003) Overview of marine ornamental shrimp aquaculture. In: Cato JC, Brown CL (eds) Marine ornamental species: collection, culture & conservation. Iowa State Press, Iowa, pp 221–230Google Scholar
  8. Calado R, Rosa R, Nunes M, Narciso L (2005a) Amino and fatty acid dynamics of Lysmata seticaudata (Decapoda : Hippolytidae) embryos during early and late reproductive season. Mar Biol 147:341–351. doi: 10.1007/s00227-005-1562-4 CrossRefGoogle Scholar
  9. Calado R, Figueiredo J, Rosa R, Nunes ML, Narciso L (2005b) Effects of temperature, density, and diet on development, survival, settlement synchronism, and fatty acid profile of the ornamental shrimp Lysmata seticaudata. Aquaculture 245:221–237CrossRefGoogle Scholar
  10. Calado R, Vitorino A, Dionisio G, Dinis MT (2007) A recirculated maturation system for marine ornamental decapods. Aquaculture 263:68–74. doi: 10.1016/j.aquaculture.2006.10.013 CrossRefGoogle Scholar
  11. Calado R, Dionisio G, Bartilotti C, Nunes C, dos Santos A, Dinis MT (2008) Importance of light and larval morphology in starvation resistance and feeding ability of newly hatched marine ornamental shrimps Lysmata spp. (Decapoda: Hippolytidae). Aquaculture 283:56–63. doi: 10.1016/j.aquaculture.2008.07.010 CrossRefGoogle Scholar
  12. Castille FL, Lawrence AL (1989) The relationship between maturation and biochemical composition of the gonads and digestive glands of the shrimps Penaeus aztecus Ives and Penaeus setiferus (L.). J Crustac Biol 9:202–211CrossRefGoogle Scholar
  13. Clarke A (1982) Lipid-synthesis and reproduction in the polar shrimp Chorismus antarcticus. Mar Ecol-Prog Ser 9:81–90CrossRefGoogle Scholar
  14. Clarke A (1987) Temperature, latitude and reproductive effort. Mar Ecol-Prog Ser 38:89–99CrossRefGoogle Scholar
  15. Cohen Z, Vonshak A, Richmond A (1988) Effect of environmental conditions on fatty acid composition of the red algae Porphyridium cruentum: correlation to growth rate. J Phycol 24:328–332Google Scholar
  16. Coman GJ, Arnold SJ, Callaghan TR, Preston NP (2007) Effect of two maturation diet combinations on reproductive performance of domesticated Penaeus monodon. Aquaculture 263:75–83. doi: 10.1016/j.aquaculture.2006.10.016 CrossRefGoogle Scholar
  17. De Grave S, Pentcheff ND, Ahyong ST, Chan TY, Crandall KA, Dworschak PC, Felder DL, Feldmann RM, Fransen C, Goulding LYD, Lemaitre R, Low MEY, Martin JW, Ng PKL, Schweitzer CE, Tan SH, Tshudy D, Wetzer R (2009) A classification of living and fossil genera of decapod crustaceans. Raffles Bull Zool Sup 21:1–109Google Scholar
  18. Debelius H (2001) Crustacea guide of the world. IKAN—Unterwasserarchive FrankfurtGoogle Scholar
  19. Gimenez L, Anger K (2005) Effects of temporary food limitation on survival and development of brachyuran crab larvae. J Plankton Res 27:485–494. doi: 10.1093/plankt/fbi024 CrossRefGoogle Scholar
  20. Harrison KE (1990) The role of nutrition in maturation, reproduction and embryonic development of decapod crustaceans: a review. J Shellfish Res 9:1–28Google Scholar
  21. Lepage G, Roy CC (1986) Direct transesterification of all classes of lipids in one-step reaction. J Lipid Res 27:114–120PubMedGoogle Scholar
  22. Mourente G (1996) In vitro metabolism of C-14-polyunsaturated fatty acids in midgut gland and ovary cells from Penaeus kerathurus Forskal at the beginning of sexual maturation. Comp Biochem Physiol B Comp Biochem 115:255–266CrossRefGoogle Scholar
  23. Mueller LD, Altenberg L (1985) Statistical inference on measures of niche overlap. Ecology 66:1204–1210CrossRefGoogle Scholar
  24. Naessens E, Lavens P, Gomez L, Browdy CL, McGovernHopkins K, Spencer AW, Kawahigashi D, Sorgeloos P (1997) Maturation performance of Penaeus vannamei co-fed Artemia biomass preparations. Aquaculture 155:87–101CrossRefGoogle Scholar
  25. Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson GL, Solymos P, Stevens MHH, Wagner H (2009) Vegan: community ecology package. R package version 1.15-4.
  26. Pandian TJ (1994) Arthropoda–Crustacea. In: Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates. Wiley, Chichester, pp 39–166Google Scholar
  27. Rhyne AL, Lin J (2006) A western Atlantic peppermint shrimp complex: redescription of Lysmata wurdemanni, description of four new species, and remarks on Lysmata rathbunae (Crustacea: Decapoda: Hippolytidae). Bull Mar Sci 79:165–204Google Scholar
  28. Rosa R, Calado R, Narciso L, Nunes ML (2007) Embryogenesis of decapod crustaceans with different life history traits, feeding ecologies and habitats: a fatty acid approach. Mar Biol 151:935–947. doi: 10.1007/s00227-006-0535-6 CrossRefGoogle Scholar
  29. Smith LL, Fox JM, Treece GD, McVey JP (1993) Intensive larviculture techniques. In: McVey JP (ed) Handbook of mariculture. CRC Press, Boca Raton, pp 153–172Google Scholar
  30. Stevens BG, Swiney KM, Buck L (2008) Thermal effects on embryo development and hatching for blue king crab Paralithodes platypus held in the laboratory, and a method for predicting dates of hatching. J Shellfish Res 27:1255–1263CrossRefGoogle Scholar
  31. Tong LJ, Moss GA, Pickering TD, Paewai MP (2000) Temperature effects on embryo and early larval development of the spiny lobster Jasus edwardsii, and description of a method to predict larval hatch times. Mar Freshw Res 51:243–248CrossRefGoogle Scholar
  32. Wear RG (1974) Incubation in the British Decapoda Crustacea, and the effects of temperature on the rate and success of embryonic development. J Mar Biol Assoc U K 54:745–762CrossRefGoogle Scholar
  33. Wouters R, Lavens P, Nieto J, Sorgeloos P (2001) Penaeid shrimp broodstock nutrition: an updated review on research and development. Aquaculture 202:1–21CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ricardo Calado
    • 1
    Email author
  • Tânia Pimentel
    • 1
  • Daniel F. R. Cleary
    • 1
  • Gisela Dionísio
    • 2
  • Cristóvão Nunes
    • 2
  • Teresa Lopes da Silva
    • 3
  • Maria Teresa Dinis
    • 2
  • Alberto Reis
    • 3
  1. 1.Centro de Estudos do Ambiente e do Mar (CESAM)/Departamento de Biologia daUniversidade de AveiroAveiroPortugal
  2. 2.CCMAR/Universidade do AlgarveFaroPortugal
  3. 3.Instituto Nacional de Engenharia, Tecnologia e Inovação, Departamento de BiotecnologiaUnidade de Bioengenharia e BioprocessosLisbonPortugal

Personalised recommendations