Advertisement

Marine Biology

, Volume 157, Issue 10, pp 2341–2345 | Cite as

Larvae of the pteropod Cavolinia inflexa exposed to aragonite undersaturation are viable but shell-less

  • S. ComeauEmail author
  • G. Gorsky
  • S. Alliouane
  • J.-P. Gattuso
Short Communication

Abstract

Larvae of the Mediterranean pteropod Cavolinia inflexa were maintained at controlled pHT values of 8.1, 7.82 and 7.51, equivalent, respectively, to pCO2 levels of 380, 857 and 1,713 μatm. At pHT 7.82, larvae exhibited malformations and lower shell growth, compared to the control condition. At pHT 7.51, the larvae did not make shells but were viable and showed a normal development. However, smaller shells or no shells will have both ecological (food web) and biogeochemical (export of carbon and carbonate) consequences. These results suggest that pteropod larvae, as well as the species dependent upon them or upon adults as a food resource, might be significantly impacted by ocean acidification.

Keywords

Aragonite Calcium Carbonate Ocean Acidification Shell Growth Aragonite Saturation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Thanks are due to John Dolan for his helpful comments on this paper. This work is a contribution to the “European Project on Ocean Acidification” (EPOCA) which received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 211384. EPOCA is endorsed by the International Programmes IMBER, LOICZ and SOLAS. This work also received funding from the “Fondation Total” through the REMECCA project.

Supplementary material

Supplementary material 1 (MPG 19656 kb)

References

  1. Bé AWH, Gilmer RW (1977) A zoogeographic and taxonomic review of euthecosomatous pteropods. In: Ramsey A (ed) Oceanic micropaleontology, vol 1. Academic, London, pp 733–808Google Scholar
  2. Berner RA, Honjo S (1981) Pelagic sedimentation of aragonite: its geochemical significance. Science 3:940–942CrossRefGoogle Scholar
  3. Caldeira K, Wickett ME (2003) Oceanography: anthropogenic carbon and ocean pH. Nature 425:365CrossRefPubMedGoogle Scholar
  4. Checkley DM (1980) The egg production of a marine planktonic copepod in relation to its food supply: laboratory studies. Limnol Oceanogr 25:430–446CrossRefGoogle Scholar
  5. Collier R, Dymond J, Honjo S, Manganini S, Francois R, Dunbar R (2000) The vertical flux of biogenic and lithogenic material in the Ross Sea: moored sediment trap observations 1996–1998. Deep-Sea Res Pt II 47:3491–3520CrossRefGoogle Scholar
  6. Comeau S, Gorsky G, Jeffree R, Teyssié J-L, Gattuso J-P (2009) Impact of ocean acidification on a key Arctic pelagic mollusc (Limacina helicina). Biogeosciences 6:1877–1882CrossRefGoogle Scholar
  7. Dickson AG, Sabine CL, Christian JR (eds) (2007) Guide to best practices for ocean CO2 measurements. PICES Special Publication 3Google Scholar
  8. Feely RA, Sabine CL, Hernandez-Ayon JM, Ianson DHB (2008) Evidence for upwelling of corrosive ‘‘acidified’’ water onto the continental shelf. Science 320:1490–1492CrossRefPubMedGoogle Scholar
  9. Fine M, Tchernov D (2007) Scleractinian coral species survive and recover from decalcification. Science 315:181CrossRefGoogle Scholar
  10. Francois R, Honjo S, Krishfield R, Manganini S (2002) Factors controlling the fluxof organic carbon to the bathypelagic zone of the ocean. Glob Biogeochem Cy 16:1087. doi: 10.1029/2001GB001722 CrossRefGoogle Scholar
  11. Gannefors C, Böer M, Kattner G, Graeve M, Eiane K, Gulliksen B, Hop H, Falk-Petersen S (2005) The Arctic sea butterfly Limacina helicina: lipids and life strategy. Mar Biol 147:169–177CrossRefGoogle Scholar
  12. Gattuso J-P, Frankignoulle M, Bourge I, Romaine S, Buddemeier RW (1998) Effect of calcium carbonate saturation of seawater on coral calcification. Glob Planet Change 18:37–46CrossRefGoogle Scholar
  13. Gazeau F, Quiblier C, Jansen JM, Gattuso J-P, Middelburg JJ, Heip CHR (2007) Impact of elevated CO2 on shellfish calcification. Geophys Res Lett 34:L07603. doi: 10.1029/2006GL02855 CrossRefGoogle Scholar
  14. Gilmer RW, Harbison GR (1986) Morphology and field behavior of pteropod molluscs: feeding methods in the families Cavoliniidae, Limacinidae and Peraclididae (Gastropoda: Thecosomata). Mar Biol 91:47–57CrossRefGoogle Scholar
  15. Harbison GR, Gilmer RW (1992) Diet of Limacina helicina (Gastropoda: Thecosomata) in Arctic waters in midsummer. Mar Ecol Prog Ser 77:125–134Google Scholar
  16. Hunt BP, Pakhomov EA, Hosie GW, Siegel V, Ward P, Bernard K (2008) Pteropods in Southern Ocean ecosystems. Prog Oceanogr 78:193–221CrossRefGoogle Scholar
  17. Karnovsky NJ, Hobson KA, Iverson S, Hunt GL Jr (2008) Seasonal changes in diets of seabirds in the North Water Polynya: a multiple-indicator approach. Mar Ecol Prog Ser 357:291–299CrossRefGoogle Scholar
  18. Lalli CM, Gilmer RW (1989) Pelagic snails. The biology of holoplanktonic gastropod mollusks. Stanford University Press, Stanford, CaliforniaGoogle Scholar
  19. Langdon C, Atkinson MJ (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J Geophys Res 110:C09S07. doi: 10.1029/2004JC002576 CrossRefGoogle Scholar
  20. Lavigne H, Proye A, Gattuso J-P (2009) Portions of code and/or corrections. In: Epitalon J-M, Hofmann A, Gentili B, Orr J, Soetaert K (eds) Seacarb: calculates parameters of the seawater carbonate system. R package version 2.2. http://CRAN.R-project.org/package=seacarb
  21. Mc Laren IA (1965) Some relationships between temperature and egg size, body size, development rate, and fecundity, of the copepod pseudocalanus. Limnol Oceanogr 10:528–538CrossRefGoogle Scholar
  22. Ohman MD, Lavaniegos BE, Townsend AW (2009) Multi-decadal variations in calcareous holozooplankton in the California current system: thecosome pteropods, heteropods, and foraminifera. Geophys Res Lett 36:L18608. doi: 10.1029/2009GL039901 CrossRefGoogle Scholar
  23. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA (2005) Anthropogenic ocean acidification over the 21st century and its impact on calcifying organisms. Nature 437:681–686CrossRefPubMedGoogle Scholar
  24. Pawlowski J, Bolivar I, Fahrni J, De Vargas C, Bowser S (1999) Naked foraminiferans revealed. Nature 399:27CrossRefGoogle Scholar
  25. Rampal J (1975) Les Thécosomes (mollusques pélagiques) Systématique et Evolution—Ecologie et Biogéographie Méditerranéennes, Ph.D. thesis, University of Aix-Marseille I, Marseille, 485 ppGoogle Scholar
  26. Reynaud S, Leclercq N, Romaine-Lioud S, Ferrier-Pagès C, Jaubert J, Gattuso J-P (2003) Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Glob Change Biol 9:1660–1668CrossRefGoogle Scholar
  27. Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE, Morel FMM (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–367CrossRefPubMedGoogle Scholar
  28. Ries JB, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37:1131–1134CrossRefGoogle Scholar
  29. Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371CrossRefPubMedGoogle Scholar
  30. Steinacher M, Joos F, Frolicher TL, Plattner G-K, Doney SC (2009) Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences 6:515–533CrossRefGoogle Scholar
  31. Yamamoto-Kawai M, McLaughlin FA, Carmack EC, Nishino S, Shimada K (2009) Aragonite undersaturation in the Arctic Ocean: effects of ocean acidification and sea ice melt. Science 326:1098–1100CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • S. Comeau
    • 1
    • 2
    Email author
  • G. Gorsky
    • 1
    • 2
  • S. Alliouane
    • 1
    • 2
  • J.-P. Gattuso
    • 1
    • 2
  1. 1.INSU-CNRS, Laboratoire d’Océanographie de VillefrancheVillefranche-sur-Mer CedexFrance
  2. 2.UPMC University of Paris 06, Observatoire Océanologique de VillefrancheVillefranche-sur-MerFrance

Personalised recommendations