Marine Biology

, Volume 157, Issue 10, pp 2253–2262 | Cite as

Mitochondrial genomic divergence in coelacanths (Latimeria): slow rate of evolution or recent speciation?

  • Sudarto
  • Xandramaya C. Lalu
  • Janny D. Kosen
  • Agus H. Tjakrawidjaja
  • Ruby Vidia Kusumah
  • Bambang Sadhotomo
  • Kadarusman
  • Laurent Pouyaud
  • Jacques Slembrouck
  • Emmanuel Paradis
Original Paper


Dating the divergence between the two known living species of coelacanths has remained a difficult issue because of the very ancient origin of this lineage of fish, which is more closely related to tetrapods than to other fishes. We sequenced the complete mitochondrial genome of a recently captured individual of the Indonesian coelacanth in order to solve this issue. Using an approach based on loglinear models, we studied the molecular divergence between the two species of coelacanths and three other pairs of species, one that has diverged recently (Pan) and two that have diverged more distantly in the past. The loglinear models showed that the divergence between the two species of coelacanths is not significantly different from the two species of Pan. A detailed gene by gene analysis of the patterns of nucleotide and amino acid substitutions between these two pairs of species further supports the similarity of these divergences. On the other hand, a molecular dating analysis suggested a much older origin of the two coelacanth species (between 20 and 30 million years ago). We discuss the potential reasons for this discrepancy. The analysis of new individuals of the Indonesian coelacanth will certainly help to solve this issue.


Markov Chain Monte Carlo Effective Population Size Amino Acid Change Codon Position Calibration Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to Thibaut Jombart and an anonymous reviewer for their constructive comments on a previous version of this paper. This research was financially supported by an Action Thématique Incitative of the Institut de Recherche pour le Développement.


  1. Agresti A (2002) Categorical data analysis, 2nd edn. Wiley, New YorkCrossRefGoogle Scholar
  2. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Proceedings of the second international symposium on information theory, Akadémia Kiado, Budapest, pp 267–281Google Scholar
  3. Balloux F (2009) The worm in the fruit of the mitochondrial DNA trees. Heredity doi: 10.1038/hdy.2009.122 Google Scholar
  4. Balloux F, Handley LJ, Jombart T, Liu H, Manica A (2009) Climate shaped the worldwide distribution of human mitochondrial DNA sequence variation. Proc R Soc Lond B 276:3447–3455CrossRefGoogle Scholar
  5. Bazin E, Glémin S, Galtier N (2006) Population size does not influence mitochondrial genetic diversity in animals. Science 312:570–572CrossRefPubMedGoogle Scholar
  6. Benton MJ, Donoghue PCJ (2007) Paleontological evidence to date the tree of life. Mol Biol Evol 24(1):26–53. Erratum 24:889–891CrossRefPubMedGoogle Scholar
  7. Charif D, Lobry J (2007) SeqinR 1.0-2: A contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis. In: Bastolla U, Porto HRM, Vendruscolo M (eds) Structural approaches to sequence evolution: molecules, networks, populations. Springer, New York, pp 207–232Google Scholar
  8. Erdmann MV (1999) An account of the first living coelacanth known to scientists from Indonesian waters. Environ Biol Fish 54:439–443CrossRefGoogle Scholar
  9. Erdmann MV, Caldwell RL, Jewett SL, Tjakrawidjaja A (1999) The second recorded living coelacanth from north Sulawesi. Environ Biol Fish 54(4):445–451CrossRefGoogle Scholar
  10. Gordon AL (1998) Coelacanth populations may go with the flow. Nature 395:634CrossRefGoogle Scholar
  11. Heibl C (2010) LAGOPUS: R-package for Bayesian relaxed-clock molecular dating.
  12. Holder MT, Erdmann MV, Wilcox TP, Caldwell RL, Hillis DM (1999) Two living species of coelacanths? Proc Natl Acad Sci USA 96(22):12616–12620CrossRefPubMedGoogle Scholar
  13. Inoue JG, Miya M, Venkatesh B, Nishida M (2005) The mitochondrial genome of Indonesian coelacanth Latimeria menadoensis (Sarcopterygii: Coelacanthiformes) and divergence time estimation between the two coelacanths. Gene 349:227–235CrossRefPubMedGoogle Scholar
  14. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  15. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  16. Lanfear R, Thomas JA, Welch JJ, Brey T, Bromham L (2007) Metabolic rate does not calibrate the molecular clock. Proc Natl Acad Sci USA 104(39):15388–15393CrossRefPubMedGoogle Scholar
  17. Miller HC, Moore JA, Allendorf FW, Daugherty CH (2009) The evolutionary rate of tuatara revisited. Trends Genet 25(1):13–15CrossRefPubMedGoogle Scholar
  18. Nabholz B, Glémin S, Galtier N (2009) The erratic mitochondrial clock: variations of mutation rate, not population size, affect mtDNA diversity across birds and mammals. BMC Evol Biol 9:54CrossRefPubMedGoogle Scholar
  19. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, OxfordGoogle Scholar
  20. Nelson JS (2006) Fishes of the world, 4th edn. Wiley, HobokenGoogle Scholar
  21. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20(2):289–290CrossRefPubMedGoogle Scholar
  22. Parham JF, Irmis RB (2008) Caveats on the use of fossil calibrations for molecular dating: a comment on Near et al. Am Nat 171(1):132–136CrossRefPubMedGoogle Scholar
  23. Pereira SL, Baker AJ (2006) A mitogenomic timescale for birds detects variable phylogenetic rates of molecular evolution and refutes the standard molecular clock. Mol Biol Evol 23:1731–1740CrossRefPubMedGoogle Scholar
  24. Perry GH, Tito RY, Verrelli BC (2007) The evolutionary history of human and chimpanzee Y-chromosome gene loss. Mol Biol Evol 24(3):853–859CrossRefPubMedGoogle Scholar
  25. Piganeau G, Eyre-Walker A (2009) Evidence for variation in the effective population size of animal mitochondrial DNA. Plos One 4(2):e4396CrossRefPubMedGoogle Scholar
  26. Pouyaud L, Wirjoatmodjo S, Rachmatika I, Tjakrawidjaja A, Hadiaty R, Hadie W (1999) A new species of coelacanth. C R Acad Sci III 322:261–267PubMedGoogle Scholar
  27. Pulquério MJF, Nichols RA (2007) Dates from the molecular clock: how wrong can we be? Trends Ecol Evol 22(4):180–184CrossRefPubMedGoogle Scholar
  28. R Development Core Team (2009) R: a language and environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
  29. Raaum RL, Sterner KN, Noviello CM, Stewart CB, Disotell TR (2005) Catarrhine primate divergence dates estimated from complete mitochondrial genomes: concordance with fossil and nuclear DNA evidence. J Hum Evol 48(3):237–257CrossRefPubMedGoogle Scholar
  30. Santini F, Harmon LJ, Carnevale G, Alfaro ME (2009) Did genome duplication drive the origin of teleosts? A comparative study of diversification in ray-finned fishes. BMC Evol Biol 9:194CrossRefPubMedGoogle Scholar
  31. Sasaki T, Sato T, Miura S, Bwathondi POJ, Ngatunga BP, Okada N (2007) Mitogenomic analysis for coelacanths (Latimeria chalumnae) caught in Tanzania. Gene 389(1):73–79CrossRefPubMedGoogle Scholar
  32. Schartl M, Hornung U, Hissmann K, Schauer J, Fricke H (2005) Relatedness among east African coelacanths. Nature 435:901CrossRefPubMedGoogle Scholar
  33. Smith JLB (1939) A living fish of Mesozoic type. Nature 143:455–456CrossRefGoogle Scholar
  34. Springer VG (1999) Are the Indonesian and western Indian Ocean coelacanths conspecific: a prediction. Environ Biol Fish 54(4):453–456CrossRefGoogle Scholar
  35. Subramanian S, Hay JM, Mohandesan E, Millar CD, Lambert DM (2009) Molecular and morphological evolution in tuatara are decoupled. Trends Genet 25(1):16–18CrossRefGoogle Scholar
  36. Thomas JA, Welch JJ, Woolfit M, Bromham L (2006) There is no universal molecular clock for invertebrates, but rate variation does not scale with body size. Proc Natl Acad Sci USA 103(19):7366–7371CrossRefPubMedGoogle Scholar
  37. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882Google Scholar
  38. Thorne JL, Kishino H (2002) Divergence time and evolutionary rate estimation with multilocus data. Syst Biol 51(5):689–702CrossRefPubMedGoogle Scholar
  39. Thorne JL, Kishino H, Painter IS (1998) Estimating the rate of evolution of the rate of molecular evolution. Mol Biol Evol 15(12):1647–1657PubMedGoogle Scholar
  40. Won YJ, Hey J (2005) Divergence population genetics of chimpanzees. Mol Biol Evol 22(2):297–307CrossRefPubMedGoogle Scholar
  41. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591CrossRefPubMedGoogle Scholar
  42. Yee TW (2009) VGAM: vector generalized linear and additive models. R package version 0.7-8.
  43. Yokoyama S, Tada T (2000) Adaptive evolution of the African and Indonesian coelacanths to deep-sea environments. Gene 261(1):35–42CrossRefPubMedGoogle Scholar
  44. Zardoya R, Meyer A (1997) The complete DNA sequence of the mitochondrial genome of a “living fossil,” the coelacanth (Latimeria chalumnae). Genetics 146:995–1010Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Sudarto
    • 1
  • Xandramaya C. Lalu
    • 2
  • Janny D. Kosen
    • 3
  • Agus H. Tjakrawidjaja
    • 4
  • Ruby Vidia Kusumah
    • 5
  • Bambang Sadhotomo
    • 6
  • Kadarusman
    • 7
  • Laurent Pouyaud
    • 8
  • Jacques Slembrouck
    • 9
  • Emmanuel Paradis
    • 8
  1. 1.Loka Riset Budidaya Ikan Hias Air TawarJawa BaratIndonesia
  2. 2.Dinas Kelautan dan PerikananManadoIndonesia
  3. 3.Centre of Research for Coastal Management, Small Islands and Pacific AffairSam Ratulangi UniversityManadoIndonesia
  4. 4.Zoology Division, Research Center for BiologyIndonesian Institute of Sciences (LIPI)BogorIndonesia
  5. 5.Faculty of Fisheries and Marine ScienceBogor Agricultural University (IPB)BogorIndonesia
  6. 6.Pusat Riset Perikanan TangkapAncol Jakarta UtaraIndonesia
  7. 7.Akademi Perikanan Sorong (APSOR-BPSDM.KP)Papua BaratIndonesia
  8. 8.Institut de Recherche pour le Développement, UR175 CAVIAR, GAMETMontpellier Cédex 5France
  9. 9.Institut de Recherche pour le DéveloppementJakartaIndonesia

Personalised recommendations