Marine Biology

, Volume 157, Issue 8, pp 1819–1835 | Cite as

Large-scale diversity and biogeography of benthic copepods in European waters

  • Gritta Veit-Köhler
  • Marleen De Troch
  • Mateja Grego
  • Tania Nara Bezerra
  • Wendy Bonne
  • Guy De Smet
  • Christina Folkers
  • Kai Horst George
  • Chen Guotong
  • Rudy Herman
  • Rony Huys
  • Nikolaos Lampadariou
  • Jürgen Laudien
  • Pedro Martínez Arbizu
  • Armin Rose
  • Michaela Schratzberger
  • Sybille Seifried
  • Paul Somerfield
  • Jan Vanaverbeke
  • Edward Vanden Berghe
  • Magda Vincx
  • Borut Vriser
  • Leen Vandepitte
Original Paper

Abstract

A large-scale database concerning benthic copepods from the Arctic, Baltic Sea, North Sea, British Isles, Adriatic Sea and Crete was compiled to assess species richness, biodiversity, communities, ecological range size and biogeographical patterns. The Adriatic showed the highest evenness and the most species-rich communities. Assemblages from the North Sea, British Isles, Baltic and Crete had a lower evenness. The British Isles were characterised by impoverished communities. The ecological specificity of copepod species showed two diverging trends: higher specificity of species in more diverse assemblages was observed in the Adriatic, North Sea and Baltic. A uniformly high species specificity disregarding sample diversity was found on Crete and in the British Isles. Benthic copepod communities showed distinct patterns that clearly fit the predefined geographical regions. Communities were distinguishable and β-diversity was found to be high around Europe, indicating a high species turnover on the scale of this investigation. The British Isles and the North Sea were found to be faunistic links to the Baltic and the Arctic.

References

  1. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. doi:10.1111/j.1442-9993.2001.01070.pp.x CrossRefGoogle Scholar
  2. Bianchi CN, Morri C (2000) Marine biodiversity of the Mediterranean Sea: situation, problems and prospects for future research. Mar Pollut Bull 40(5):367–376. doi:10.1016/S0025-326X(00)00027-8 CrossRefGoogle Scholar
  3. Bonne W (2003) Benthic copepod communities in relation to natural and anthropogenic influences in the North Sea: sediments, sand extraction and phytoplankton blooms [Benthische copepodengemeenschappen in relatie tot natuurlijke en anthropogene invloeden in de Noordzee: sedimenten, zandontginning en de phytoplankton bloei]. PhD thesis. Universiteit Gent: Gent, Belgium. VI, 289 pGoogle Scholar
  4. Caruso T, Notto La Diega R, Bernini F (2005) The effects of spatial scale on the assessment of soil fauna diversity: data from the oribatid mite community of the Pelagian Islands (Sicilian Channel, southern Mediterranean). Acta Oecol 28:23–31. doi:10.1016/j.actao.2005.01.006 CrossRefGoogle Scholar
  5. Chertoprud ES, Garlitska LA (2007) A comparative analysis of the Harpacticoida (Copepoda) faunas from the northern and southern seas of Russia. Oceanology 47(6):814–823. doi:10.1134/S0001437007060069 CrossRefGoogle Scholar
  6. Chertoprud ES, Chertoprud MV, Garlitskaya LA, Azovsky AI, Kondar DV (2007) Spatial variability of the structure of the Harpacticoida (Copepoda) crustacean assemblages in intertidal and shallow-water zones of European seas. Oceanology 47(1):51–59. doi:10.1134/S0001437007010080 CrossRefGoogle Scholar
  7. Clarke KR, Gorley RN (2001) Primer v5: user manual/tutorial. PRIMER-E, PlymouthGoogle Scholar
  8. Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, PlymouthGoogle Scholar
  9. Clarke KR, Warwick RM (1994) Change in marine communities: an approach to statistical analysis and interpretation. Plymouth Marine Laboratory, Plymouth, 144 pGoogle Scholar
  10. De Troch M, Fiers F, Vincx M (2001) Alpha and beta diversity of harpacticoid copepods in a tropical seagrass bed: the relation between diversity and species’ range size distribution. Mar Ecol Prog Ser 215:225–236. doi:10.3354/meps215225 CrossRefGoogle Scholar
  11. Draper NR, Smith H (1981) Applied regression analysis. Wiley, New York, 709 pGoogle Scholar
  12. Flander Putrle V, Malej A (2003) The trophic state of coastal waters under the influence of anthropogenic sources of nutrients (fish farm, sewage outfalls). Period Biol 105(4):359–365Google Scholar
  13. Folkers C, George KH (2010) Community analysis of sublittoral Harpacticoida (Crustacea, Copepoda) in the Western Baltic Sea. Hydrobiologia. doi:10.1007/s10750-010-0210-2
  14. Gheerardyn H, Veit-Köhler G (2009) Diversity and large-scale biogeography of Paramesochridae (Copepoda, Harpacticoida) in South Atlantic abyssal plains and the deep Southern Ocean. Deep-Sea Res I 56(10):1804–1815. doi:10.1016/j.dsr.2009.05.002 CrossRefGoogle Scholar
  15. Guotong C (1987) Study of the meiobenthos in the Southern Bight of the North Sea and its use in ecological monitoring. MSc thesis. Rijksuniversiteit Gent, Zoologisch Instituut, Gent, Belgium, 172 pGoogle Scholar
  16. Herman RL (1989) Structure of the meiobenthos communities in the Southern Bight of the North Sea, with special attention for the Copepoda Harpacticoida [De struktuur van de meiobenthosgemeenschappen in de Zuidelijke Bocht van de Noordzee, met speciale aandacht voor de Copepoda Harpacticoida]. PhD thesis. Rijksuniversiteit Gent, Faculteit der Wetenschappen, Gent, Belgium, 211 pGoogle Scholar
  17. Hofrichter R (2002) Das Mittelmeer. Fauna, Flora, Ökologie. Band I. Spektrum Akademischer Verlag, Heidelberg 607 pGoogle Scholar
  18. Kuklinski P, Barnes DKA, Taylor PD (2006) Latitudinal patterns of diversity and abundance in North Atlantic intertidal boulder-fields. Mar Biol 149:1577–1583. doi:10.1007/s00227-006-0311-7 CrossRefGoogle Scholar
  19. Lambshead PJD, Platt HM, Shaw KM (1983) The detection of differences among assemblages of marine benthic species based on an assessment of dominance and diversity. J Nat Hist 17:859–874. doi:10.1080/00222938300770671 CrossRefGoogle Scholar
  20. Lampadariou N, Austen MC, Robertson N, Vlachonis G (1997) Analysis of meiobenthic community structure in relation to pollution and disturbance in Iraklion harbour, Greece. Vie Milieu 47(1):9–24Google Scholar
  21. Magurran AE (2004) Measuring biological diversity. Blackwell, Maiden 256 pGoogle Scholar
  22. Malačič V, Petelin B (2001) Gulf of Trieste. In: Cushman-Roisin B, Gačić Poulakis P-M, Artegiani A (eds) Physical oceanography of the Adriatic sea: past, present and future. Kluwer, Dordrecht, pp 167–181Google Scholar
  23. Marcotte BM, Coull BC (1974) Pollution, diversity and meiobenthic communities in the North Adriatic (Bay of Piran, Yugoslavia). Vie Milieu 24:281–300Google Scholar
  24. Moore CG, Somerfield PJ (1997) Response of the meiofaunal community to sewage sludge disposal in the Firth of Clyde, Scotland. In: McLusky DS (ed) The estuaries of Central Scotland. Coast Zone Topics Process Ecol Manage 3:121–128Google Scholar
  25. Mozetič P, Solidoro C, Cossarini G, Socal G, Robert Precali R, Francé J, Bianchi F, De Vittor C, Smodlaka N, Fonda Umani S (2009) Recent trends towards oligotrophication of the northern Adriatic: evidence from chlorophyll a time series. Estuar Coasts. doi: 10.1007/s12237-009-9191-7
  26. Orlando-Bonaca M, Lipej L (2005) Factors affecting habitat occupancy of fish assemblage in the Gulf of Trieste (Northern Adriatic Sea). Mar Ecol 26(1):42–53. doi:10.1111/j.1439-0485.2005.00037.x CrossRefGoogle Scholar
  27. Rose A, Seifried S (2006) Small-scale diversity of Harpacticoida (Crustacea, Copepoda) from an intertidal sandflat in the Jade Bay (German Bight, North Sea). Senckenb Marit 36(2):109–122. doi:10.1007/BF03043724 CrossRefGoogle Scholar
  28. Schlacher TA, Newell P, Clavier J, Schlacher-Hoenlinger MA, Chevillon C, Britton J (1998) Soft-sediment benthic community structure in a coral reef lagoon—the prominence of spatial heterogeneity and ‘spot endemism’. Mar Ecol Prog Ser 174:159–174. doi:10.3354/meps174159 CrossRefGoogle Scholar
  29. Schratzberger M, Gee JM, Rees HL, Boyd SE, Wall CM (2000) The structure and taxonomic composition of sublittoral meiofauna assemblages as an indicator of the status of marine environments. J Mar Biol Ass UK 80(6):969–980. doi:10.1017/S0025315400003039 CrossRefGoogle Scholar
  30. Schratzberger M, Lampadariou N, Somerfield PJ, Vandepitte L, Vanden Berghe E (2009) The impact of seabed disturbance on nematode communities: linking field and laboratory observations. Mar Biol 156:709–724. doi:10.1007/s00227-008-1122-9 CrossRefGoogle Scholar
  31. Seifried S, Veit-Köhler G (2010) Redescription of Bradya typica Boeck, 1873 (Copepoda: Harpacticoida: Ectinosomatidae) with the first description of the male. Helgol Mar Res 64:1–20. doi:10.1007/s10152-009-0165-8 CrossRefGoogle Scholar
  32. Somerfield PJ, Clarke KR (1995) Taxonomic levels, in marine community studies, revisited. Mar Ecol Prog Ser 127:113–119. doi:10.3354/meps127113 CrossRefGoogle Scholar
  33. Somerfield PJ, Gee JM, Warwick RM (1994a) Benthic community structure in relation to an instantaneous discharge of waste water from a tin mine. Mar Pollut Bull 28(6):363–369. doi:10.1016/0025-326X(94)90273-9 CrossRefGoogle Scholar
  34. Somerfield PJ, Gee JM, Warwick RM (1994b) Soft sediment meiofaunal community structure in relation to a long-term heavy metal gradient in the Fal estuary system. Mar Ecol Prog Ser 105(1–2):79–88CrossRefGoogle Scholar
  35. Somerfield PJ, Rees HL, Warwick RM (1995) Interrelationships in community structure between shallow-water marine meiofauna and macrofauna in relation to dredgings disposal. Mar Ecol Prog Ser 127:103–112. doi:10.3354/meps127103 CrossRefGoogle Scholar
  36. Stachowitsch M (1986) The Gulf of Trieste: a sensitive ecosystem. Nova Thalassia 8(suppl 3):221–235Google Scholar
  37. Stachowitsch M (1991) Anoxia in the Northern Adriatic. Rapid death, slow recovery. In: Tyson R, Pearson TH (eds) Modern and ancient continental shelf anoxia. Geological Society special publication no. 58, pp 119–129. doi: 10.1144/GSL.SP.1991.058.01.09
  38. Svendsen H, Beszczynska-Møller A, Hagen JO, Lefauconnier B, Tverberg V, Gerland S, Ørbæk JB, Bischof K, Papucci C, Zajaczkowski M, Azzolini R, Bruland O, Wiencke C, Winther J-G, Dallmann W (2002) The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Res 21(1):133–166. doi:10.1111/j.1751-8369.2002.tb00072.x CrossRefGoogle Scholar
  39. Thistle D (1988) A temporal difference in harpacticoid-copepod abundance at a deep-sea site: caused by benthic storms? Deep-Sea Res 35:1015–1020. doi:10.1016/0198-0149(88)90073-8 CrossRefGoogle Scholar
  40. Thistle D, Sedlacek L (2004) Emergent and non-emergent species of harpacticoid copepods can be recognized morphologically. Mar Ecol Prog Ser 266:195–200. doi:10.3354/meps266195 CrossRefGoogle Scholar
  41. Turk V, Mozetič P, Malej A (2007) Overview of eutrophication-related events and other irregular episodes in Slovenian Sea (Gulf of Trieste, Adriatic sea). Ann Ser Hist Nat 17:197–216Google Scholar
  42. Vandepitte L, Vanaverbeke J, Vanhoorne B, Hernandez F, Bezerra TN, Mees J, Vanden Berghe E (2009) The MANUELA database: an integrated database on meiobenthos from European marine waters. Meiofauna Marina 17:35–60Google Scholar
  43. Veit-Köhler G, Laudien J, Knott J, Velez J, Sahade R (2008) Meiobenthic colonisation of soft sediments in arctic glacial Kongsfjorden (Svalbard). J Exp Mar Biol Ecol 363:58–65. doi:10.1016/j.jembe.2008.06.018 CrossRefGoogle Scholar
  44. Vriser B (1983) Meiofaunal community structure and species diversity in the Bays of Koper, Strunjan and Piran (Gulf of Trieste, North Adriatic). Nova Thalassia 6:5–17Google Scholar
  45. Vriser B (1996a) Sezonska dinamika in variabilnost harpaktikoidov (Copepoda: Harpacticoida) v Tržaškem zalivu: triletna raziskava (Seasonal dynamics and variability of harpacticoids (Copepoda: Harpacticoida) in the Gulf of Trieste: a three-year study). Ann Ser Hist Nat 9:53–60Google Scholar
  46. Vriser B (1996b) Sezonska dinamika in variabilnost meiofavne v tržaškem zalivu: triletna raziskava (Seasonal dynamics and variability of meiofauna in the Gulf of Trieste: a three-year study). Ann Ser Hist Nat 9:45–52Google Scholar
  47. Vriser B (2000a) Meiobenthic Harpacticoida (Copepoda) from the Southern part of the Gulf of Trieste (Northern Adriatic) I. List of taxa. Ann Ser Hist Nat 19(1):23–38Google Scholar
  48. Vriser B (2000b) Meiobenthic Harpacticoida (Copepoda) from the Southern part of the Gulf of Trieste (Northern Adriatic) II. Ecology and spatial distribution. Ann Ser Hist Nat 19(1):39–54Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Gritta Veit-Köhler
    • 1
  • Marleen De Troch
    • 2
  • Mateja Grego
    • 3
  • Tania Nara Bezerra
    • 2
  • Wendy Bonne
    • 2
  • Guy De Smet
    • 2
  • Christina Folkers
    • 1
  • Kai Horst George
    • 1
  • Chen Guotong
    • 2
  • Rudy Herman
    • 4
  • Rony Huys
    • 5
  • Nikolaos Lampadariou
    • 6
  • Jürgen Laudien
    • 7
  • Pedro Martínez Arbizu
    • 1
  • Armin Rose
    • 1
  • Michaela Schratzberger
    • 8
  • Sybille Seifried
    • 9
  • Paul Somerfield
    • 10
  • Jan Vanaverbeke
    • 2
  • Edward Vanden Berghe
    • 11
    • 12
  • Magda Vincx
    • 2
  • Borut Vriser
    • 3
  • Leen Vandepitte
    • 11
  1. 1.DZMBSenckenberg Research InstituteWilhelmshavenGermany
  2. 2.Marine Biology, Biology DepartmentGhent UniversityGhentBelgium
  3. 3.Marine Biology Station PiranNational Institute of BiologyPiranSlovenia
  4. 4.Vlaamse Overheid, Departement EconomieWetenschap en InnovatieBrusselsBelgium
  5. 5.Natural History MuseumLondonUK
  6. 6.Hellenic Centre for Marine ResearchInstitute of OceanographyIraklion, CreteGreece
  7. 7.Alfred-Wegener-Institute for Polar and Marine ResearchBremerhavenGermany
  8. 8.Centre for Environment, Fisheries and Aquaculture ScienceLowestoftUK
  9. 9.Faculty 5, Institute of Biology and Environmental Sciences, AG ZoosystematicsUniversity of OldenburgOldenburgGermany
  10. 10.Plymouth Marine LaboratoryPlymouthUK
  11. 11.Flanders Marine InstituteOostendeBelgium
  12. 12.Institute of Marine and Coastal SciencesRutgers UniversityNew BrunswickUSA

Personalised recommendations