Advertisement

Marine Biology

, Volume 157, Issue 8, pp 1679–1691 | Cite as

Phylogeography of the Indo-Pacific parrotfish Scarus psittacus: isolation generates distinctive peripheral populations in two oceans

  • Kate L. Winters
  • Lynne van HerwerdenEmail author
  • J. Howard Choat
  • D. R. Robertson
Original Paper

Abstract

Phylogenetic, phylogeographic, population genetic and coalescence analyses were combined to examine the recent evolutionary history of the widespread Indo-Pacific parrotfish, Scarus psittacus, over a geographic range spanning three marine biogeographic realms. We sequenced 164 individuals from 12 locations spanning 17,000 km, from 55ºE to 143ºW, using 322 base pairs of mitochondrial control region (D-loop). S. psittacus displayed high haplotype (h = 0.83–0.98), but low nucleotide (<1%) diversity. Most (>83%) genetic variation was within populations. AMOVA revealed significant partitioning and identified five geographic groups. These included one central population and four populations peripheral to the centre. The central population occupied reefs from Western Australia to Tahiti and represented the central Indo-Pacific biogeographic realm. Cocos Keeling was distinct from central and western Indo-Pacific biogeographic realms occupying a position intermediate to these. Peripheral populations (Hawaii, Marquesas) represented the eastern Indo-Pacific biogeographic realm, while Seychelles represented the western Indo-Pacific biogeographic realm. All but the central population expanded (<163 kya). Whilst all populations experienced major sea level and SST changes associated with Pleistocene glaciation cycles, the genetic structure of the central population was relatively homogenous unlike the remaining genetically distinctive populations.

Keywords

Indian Ocean Reef Fish Minimum Span Tree Great Barrier Reef Hermit Crab 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Funding and logistic support were provided by The National Geographic Society, (Cocos Keeling, Marquesas), The Queensland Government/Smithsonian Institution Collaborative Research Program on Reef Fishes, The Smithsonian Institution, The Seychelles Fishing Authority, Cocos Keeling and Christmas Island National Parks, Department of Environment and Heritage Australia, The Taiwan National Museum, The Australian Institute of Marine Science, The Lizard Island Research Station, the University of Guam Marine Laboratory; University of Hawaii Marine Laboratory and the James Cook University internal funding scheme. Tahiti specimens were collected by M. Meekan, W. Murray, R. Thorne, J. Robinson, J. Ackerman, W. Robbins, Li Shu Chen and L. Rocha. C. Birkeland provided logistic and field assistance, collection of specimens and access to Museum material. Collections on the GBR were carried out under GBRMPA Permit number G03/3871.1. S. Klanten, D. Blair and the JCU Molecular Ecology and Evolution Laboratory assisted with laboratory work and analysis. The work was carried out under James Cook University Ethics Approval No. A503.

References

  1. Alfaro ME, Brock CD, Banbury BL, Wainwright PC (2009) Does evolutionary innovation in pharyngeal jaws lead to rapid lineage diversification in labrid fishes? BMC Evol Biol 9:255CrossRefPubMedGoogle Scholar
  2. Allen GR (2008) Conservation hotspots of biodiversity and endemism for Indo-Pacific coral reef fishes. Aquat. Conserv. Mar. Freshw. Ecosyst. 18:541–556CrossRefGoogle Scholar
  3. Alvarado Bremer JR, Baker AJ, Mejuto J (1995) Mitochondrial DNA control region sequences indicate extensive mixing of swordfish (Xiphias gladius) populations in the Atlantic Ocean. Can J Fish Aquat Sci 52:1720–1732CrossRefGoogle Scholar
  4. Anon (2000) SEQUENCHER Version 4. 1. 2. Gene Code Corporation, Ann Arbor, MIGoogle Scholar
  5. Bay LK, Choat JH, van Herwerden L, Robertson DR (2004) High genetic diversities and complex genetic structure in an Indo-Pacific tropical reef fish (Chlorurus sordidus): evidence of an unstable evolutionary past? Mar Biol 144:757–767CrossRefGoogle Scholar
  6. Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci USA 98:4563–4568CrossRefPubMedGoogle Scholar
  7. Bellwood DR, Hughes TP (2001) Regional-scale assembly rules and biodiversity of coral reefs. Science 292:1532–1535CrossRefPubMedGoogle Scholar
  8. Bohonak AJ (2002) IBD (isolation by distance): a program for analyses of isolation by distance. J Hered 93:153–154CrossRefPubMedGoogle Scholar
  9. Bowen BW, Bass AL, Rocha LA, Grant WS, Robertson DR (2001) Phylogeography of the trumpet fishes (Aulostomus): ring species complex on a global scale. Evolution 55:1029–1039CrossRefPubMedGoogle Scholar
  10. Cabioch G, Montaggioni L, Frank N, Seard C, Sallé E, Payri C, Pelletier B, Paterne M (2008) Successive reef depositional events along the Marquesas foreslopes (French Polynesia) since 26 ka. Mar Geol 254:18–34CrossRefGoogle Scholar
  11. Chen L (2002) Post-settlement diet shift of Chlororus sordidus and Scarus schlegeli (Pisces: Scaridae). Zool. Stud. 41:47–58Google Scholar
  12. Choat JH, Robertson DR (2002) Age-based studies on coral reef fishes. In: Sale PF (ed) Coral reef fishes. Dynamics and diversity in a complex ecosystem. Academic Press, New YorkGoogle Scholar
  13. Choat JH, Axe LM, Lou DC (1996) Growth and longevity in fishes of the family Scaridae. Mar Ecol Prog Ser 145:33–41CrossRefGoogle Scholar
  14. Craig MT, Eble JA, Bowen BW, Robertson DR (2007) High genetic connectivity across the Indian and Pacific Oceans in the reef fish Myripristis berndti (Holocentridae). Mar Ecol Prog Ser 334:245–254CrossRefGoogle Scholar
  15. Dickenson WR (2000) Geomorphology and geodynamics of the Cook-Austral Island-Seamount Chain in the South Pacific Ocean: implications for hotspots and plumes. tectonic Studies of Asia and the Pacific Rim: a tribute to Benjamin M. Page (1911–1997). Geol. Soc Am 3:17–32 International Book SeriesGoogle Scholar
  16. Drew J, Allen G, Kaufman L, Barber PH (2008) Endemism and regional colour and genetic differences in five putatively cosmopolitan reef fishes. Conserv Biol 22:965–975CrossRefPubMedGoogle Scholar
  17. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.1: an integrated software package for population genetics data analysis. Evol Bioinforma Online 1:47–50Google Scholar
  18. Gaither MR, Toonen RJ, Robertson DR, Planes S, Bowen BW (2010) Genetic evaluation of marine biogeographical barriers: perspectives from two widespread Indo-Pacific snappers (Lutjanus kasmira and Lutjanus fulvus). J Biogeogr 37:133–147Google Scholar
  19. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  20. Harpending HC (1994) Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol 66:591–600PubMedGoogle Scholar
  21. Hobbs JP, Frisch AJ, Allen GR, van Herwerden L (2009) Marine hybrid hotspot at Indo-Pacific biogeographic border. Biol. Lett. 23:258–261Google Scholar
  22. Horne JB, van Herwerden L, Choat JH, Robertson DR (2008) High population connectivity across the Indo-Pacific: congruent lack of phylogeographic structure in three reef fish congeners. Mol Phylogenet Evol 49:629–638CrossRefPubMedGoogle Scholar
  23. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755CrossRefPubMedGoogle Scholar
  24. Kazancioglu E, Near TJ, Hanel R, Wainwright PC (2009) Influence of sexual selection and feeding functional morphology on diversification rate of parrotfishes (Scaridae). Proc. R Soc. B 276:3439–3446CrossRefPubMedGoogle Scholar
  25. Klanten OS, Choat JH, van Herwerden L (2007) Extreme genetic diversity and temporal rather than spatial partitioning in a widely distributed coral reef fish. Mar Biol 150:659–670CrossRefGoogle Scholar
  26. Lacson JM, Clark S (1995) Genetic divergence of Maldivian and Micronesian demes of the damselfishes Stegastes nigricans, Chrysiptera biocellata, C. glauca and C. leucopoma (Pomacentridae). Mar Biol 121:585–590CrossRefGoogle Scholar
  27. Le Ray M, Beldade R, Holbrook SJ, Schmitt RJ, Planes S (2010) Allopatric divergence and speciation in coral reef fish: the three spot damselfish Dascyllus, Dascyllus trimaculatus, species complex. Evolution. doi: 10.1111/j.1558-5646.2009.00917.x
  28. Leis JM, Carson-Ewart BM (2000) The larvae of Indo-Pacific coastal fishes: an identification guide to marine fish larvae. Brill, LeidenGoogle Scholar
  29. Malay MCD, Pauly G (2010) Peripatric speciation drives diversification and distributional pattern of reef hermit crabs (Decapoda:Diogenidae:Calcinus). Evolution. doi: 10.1111/j.1558-5646.2009.00848.x
  30. Mantel N (1967) The detection of disease clustering and generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  31. Martinez E, Maamaatuaiahutapu K (2004) Island mass effect in the Marquesas Islands: time variation. Geophys Res Lett 31:1–4CrossRefGoogle Scholar
  32. McMillan WO, Palumbi SR (1997) Rapid rate of control-region evolution in Pacific Butterfly fishes (Chaetodontidae). J Mol Evol 45:473–484CrossRefPubMedGoogle Scholar
  33. Messmer V, van Herwerden L, Munday P, Jones GP (2005) Phylogeography of colour polymorphism in the coral reef fish Pseudochromis fuscus, from Papua New Guinea and the Great Barrier Reef. Coral Reefs 24:392–402CrossRefGoogle Scholar
  34. Miller TI, Cribb TH (2007) Phylogenetic relationships of some common Indo-Pacific snappers (Perciformes:Lutjanidae) based on mitochondrial DNA sequences, with comments on the taxonomic position of the Caesioninae. Mol Phylogenet Evol 44:450–460CrossRefPubMedGoogle Scholar
  35. Mooi RD, Gill AC (2001) Historical biogeography of fishes. In: Hart PJB, Reynolds JD (eds) Handbook of fish biology and fisheries. Blackwell Publishing, Oxford, pp 43–68Google Scholar
  36. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  37. Nishiguchi MK, Doukakis P, Egan M, Kizirian D, Phillips A, Prendini L, Rosenbaum HC, Torres E, Wyner Y, DeSalle R, Giribet G (2002) Methods and tools in biosciences and medicine: techniques in molecular systematics and evolution DNA isolation procedures. Birkhauser, BasalGoogle Scholar
  38. Parenti P, Randall JE (2001) An annotated checklist of the species of the labroid fish, families Labridae and Scaridae. Ichthyol. Bull. 68:1–97Google Scholar
  39. Pianka ER (1978) Evolutionary ecology. Harper and Row, New YorkGoogle Scholar
  40. Planes S, Fauvelot C (2002) Isolation by distance and vicariance drive genetic structure of a coral reef fish in the Pacific Ocean. Evolution 56:378–399PubMedGoogle Scholar
  41. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818CrossRefPubMedGoogle Scholar
  42. Randall JE (1998) Zoogeography of shore fishes of the Indo-Pacific region. Zool. Stud 31:227–268Google Scholar
  43. Randall JE (2001) Four new cardinal fishes (Perciformes:Apogonidae) from the Marquesas Islands. Pac Sci. 55:47–64CrossRefGoogle Scholar
  44. Rocha LA, Bowen BW (2008) Speciation in reef fishes. J Fish Biol 72:1101–1121CrossRefGoogle Scholar
  45. Rocha LA, Robertson DR, Roman J, Bowen BW (2005) Ecological speciation in tropical reef fishes. Proc. R Soc. Lond B 272:573–579Google Scholar
  46. Rogers AR, Harpending HC (1992) Population-growth makes waves in the distribution of pairwise genetic-differences. Mol Biol Evol 9:552–569PubMedGoogle Scholar
  47. Rohlf FJ (1973) Algorithm 76. Hierarchical clustering using the minimum spanning tree. Comput. J. 16:93–95Google Scholar
  48. Sambrook J, Fritch E, Maniatis T (1989) Molecular cloning, a laboratory manual. Cold Spring Harbour Laboratory Press, Cold Spring HarbourGoogle Scholar
  49. Sathiamurthy E, Voris HK (2006) Maps of Holocene sea level transgression and submerged lakes on the Sunda Shelf. The Natural History Journal of Chulalongkorn University, Supplement 2, pp 1–44Google Scholar
  50. Schneider S, Roessli D, Excoffier L (2000) Arlequin: a software for population genetics data analysis. Genetics and Biometry Laboratory, Department of Anthropology and Ecology, University of Geneva. 111 p. Available via http://anthro.unige.ch/software/arlequin/software/2.000/manual/Arlequin.pdf
  51. Shimodaira H, Hasegawa M (2001) CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17:1246–1247CrossRefPubMedGoogle Scholar
  52. Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution 471:264–279CrossRefGoogle Scholar
  53. Sosdian S, Rosenthal Y (2009) Deep-sea temperature and ice volume changes across the Pliocene–Pleistocene climate transitions. Science 325:306–310CrossRefPubMedGoogle Scholar
  54. Spalding MD, Fox HE, Allen GR, Davidson N, Ferdana ZA, Finlayson M, Halpern BS, Jorge MA, Lombana AL, Lourie SA, Martin KD, McManus E, Molnar J, Recchia CA, Robertson J (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57:573–583CrossRefGoogle Scholar
  55. Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony. Sinauer Associates, Sunderland, MAGoogle Scholar
  56. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evolution 24:1596–1599Google Scholar
  57. Veron J (2000) Corals of the world. Australian Institute of Marine Science, Townsville, QLDGoogle Scholar
  58. Voris HK (2000) Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. J Biogeogr 27:1153–1167CrossRefGoogle Scholar
  59. Werner R (2008) New insights into the geodynamic history of northern Wharton Basin (South-East Indian Ocean) Eos Trans AGU, 89 (53) Fall Meet. Suppl, AbstractGoogle Scholar
  60. Westneat MW, Alfaro ME (2005) Phylogenetic relationships and evolutionary history of the reef fish family Labridae Mol. Phylogenet. Evol. 36:370–390CrossRefGoogle Scholar
  61. Wolstenholme DR (1992) Animal mitochondrial DNA: structure and evolution. Int Rev Cytol 141:173–216CrossRefPubMedGoogle Scholar
  62. Woodroffe CD, Veeh HH, Falkland AC, McLean RF, Wallensky E (1991) Last interglacial reef and subsidence of the Cocos (Keeling) Islands, Indian Ocean. Mar Geol 96:137–143CrossRefGoogle Scholar
  63. Zwickl DJ (2006) GARLI. Program distributed by the author. Section of Integrative Biology, The University of Texas at Austin. Available at http://www.zo.utexas.edu/faculty/antisense/Garli.html

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Kate L. Winters
    • 1
    • 3
  • Lynne van Herwerden
    • 1
    Email author
  • J. Howard Choat
    • 1
  • D. R. Robertson
    • 2
  1. 1.Molecular Ecology and Evolution Laboratory, School of Tropical and Marine BiologyJames Cook UniversityTownsvilleQLDAustralia
  2. 2.Smithsonian Tropical Research InstituteBalboaPanama
  3. 3.Minerals Management Service, Biological Science Unit (MS 5432)New OrleansUSA

Personalised recommendations