Marine Biology

, Volume 157, Issue 7, pp 1653–1663

Cuttlebone calcification increases during exposure to elevated seawater pCO2 in the cephalopod Sepia officinalis

  • Magdalena A. Gutowska
  • Frank Melzner
  • Hans O. Pörtner
  • Sebastian Meier
Original Paper

Abstract

Changes in seawater carbonate chemistry that accompany ongoing ocean acidification have been found to affect calcification processes in many marine invertebrates. In contrast to the response of most invertebrates, calcification rates increase in the cephalopod Sepia officinalis during long-term exposure to elevated seawater pCO2. The present trial investigated structural changes in the cuttlebones of S. officinalis calcified during 6 weeks of exposure to 615 Pa CO2. Cuttlebone mass increased sevenfold over the course of the growth trail, reaching a mean value of 0.71 ± 0.15 g. Depending on cuttlefish size (mantle lengths 44–56 mm), cuttlebones of CO2-incubated individuals accreted 22–55% more CaCO3 compared to controls at 64 Pa CO2. However, the height of the CO2-exposed cuttlebones was reduced. A decrease in spacing of the cuttlebone lamellae, from 384 ± 26 to 195 ± 38 μm, accounted for the height reduction The greater CaCO3 content of the CO2-incubated cuttlebones can be attributed to an increase in thickness of the lamellar and pillar walls. Particularly, pillar thickness increased from 2.6 ± 0.6 to 4.9 ± 2.2 μm. Interestingly, the incorporation of non-acid-soluble organic matrix (chitin) in the cuttlebones of CO2-exposed individuals was reduced by 30% on average. The apparent robustness of calcification processes in S. officinalis, and other powerful ion regulators such as decapod cructaceans, during exposure to elevated pCO2 is predicated to be closely connected to the increased extracellular [HCO3] maintained by these organisms to compensate extracellular pH. The potential negative impact of increased calcification in the cuttlebone of S. officinalis is discussed with regard to its function as a lightweight and highly porous buoyancy regulation device. Further studies working with lower seawater pCO2 values are necessary to evaluate if the observed phenomenon is of ecological relevance.

Supplementary material

227_2010_1438_MOESM1_ESM.docx (682 kb)
Supplementary material 1 (DOCX 681 kb)

References

  1. Addadi L, Joester D, Nudelman F, Weiner S (2006) Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chem Eur J 12:980–987Google Scholar
  2. Appellöf A (1893) Die Schalen von Sepia, Spirula, and Nautilus. Studien über den Bau und das Wachstum. Kongl Svenska Vetenskaps-Akademiens Handlingar 25:1–106Google Scholar
  3. Berge JA, Bjerkeng B, Pettersen O, Schaanning MT, Oxnevad S (2006) Effects of increased seawater concentrations of CO2 on the growth of the bivalve Mytilus edulis L. Chemosphere 62:681–687CrossRefGoogle Scholar
  4. Bettencourt V, Guerra A (2001) Age studies based on daily growth increments in statoliths and growth lamellae in cuttlebone of cultured Sepia officinalis. Mar Biol 139:327–334CrossRefGoogle Scholar
  5. Birchall JD, Thomas NL (1983) On the architecture and function of cuttlefish bone. J Mater Sci 18:2081–2086CrossRefGoogle Scholar
  6. Boletzky S, Wiedmann J (1978) Schulp-Wachstum bei Sepia officinalis in Abhängigkeit von ökologischen parametern. Neues Jb Geol Paläont Abh 157:103–106Google Scholar
  7. Cameron JN, Iwama GK (1987) Compensation of progressive hypercapnia in channel catfish and blue crabs. J Exp Biol 122:183–197Google Scholar
  8. Checkley DM, Dickson AG, Takahashi M, Radich A, Eisenkolb N, Asch R (2009) Elevated CO2 enhances otolith growth in young fish. Science 342:1683CrossRefGoogle Scholar
  9. Dauphin Y (1996) The organic matrix of coleoid cephalopod shells: molecular weights and isoelectric properties of the soluble matrix in relation to biomineralization processes. Mar Biol 125:525–529Google Scholar
  10. Dauphin Y, Marin F (1995) The compositional analysis of recent cephalopod shell carbohydrates by Fourier transform infrared spectrometry and high performance anion exchange-pulse amperometric detection. Experientia 51:278–283CrossRefGoogle Scholar
  11. Denton EJ (1974) Croonian Lecture, 1973-Buoyancy and lives of modern and fossil cephalopods. Proc Roy Soc Lon B 185:273–299CrossRefGoogle Scholar
  12. Denton EJ, Gilpin-Brown JB (1961a) The buoyancy of the cuttlefish Sepia officinalis. J Mar Biol Assoc UK 41:319–342CrossRefGoogle Scholar
  13. Denton EJ, Gilpin-Brown JB (1961b) The effect of light on the buoyancy of the cuttlefish. J Mar Biol Assoc UK 41:343–350CrossRefGoogle Scholar
  14. Denton EJ, Gilpin-Brown JB (1961c) The distribution of gas and liquid within the cuttlebone. J Mar Biol Assoc UK 41:365–381CrossRefGoogle Scholar
  15. Denton EJ, Gilpin-Brown JB (1971) Further observations on the buoyancy of Spirula. J Mar Biol Assoc UK 51:363–373CrossRefGoogle Scholar
  16. Denton EJ, Gilpin-Brown JB, Howarth JV (1961) The osmotic mechanism of the cuttlebone. J Mar Biol Assoc UK 41:351–363CrossRefGoogle Scholar
  17. Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res Part A 34:1733–1743CrossRefGoogle Scholar
  18. Dove ADM (2005) Microstructural features of excretory calcinosis in the lobster, Homarus americanus Milne-Edwards. J Fish Dis 28:313–316CrossRefGoogle Scholar
  19. Dove ADM, LoBue C, Bowser P, Powell M (2004) Excretory calcinosis: a new fatal disease of wild American lobsters Homarus americanus. Dis Aquat Org 58:215–221CrossRefGoogle Scholar
  20. Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432CrossRefGoogle Scholar
  21. Fivelstad S, Olsen AB, Kloften H, Ski H, Stefansson S (1999) Effects of carbon dioxide on Atlantic salmon (Salmo salar L.) smolts at constant pH bicarbonate rich freshwater. Aquaculture 178:171–187CrossRefGoogle Scholar
  22. Fivelstad S, Olsen AB, Asgard T, Baeverfjord G, Rasmussen T, Vindheim T, Stefansson S (2003) Long-term sublethal effects of carbon dioxide on Atlantic salmon smolts (Salmo salar L.): ion regulation, haematology, element composition, nephrocalcinosis and growth parameters. Aquaculture 215:301–319CrossRefGoogle Scholar
  23. Florek M, Fornal E, Gomez-Romero P, Zieba E, Paszkowicz W, Lekki J, Nowak J, Kuczumow A (2009) Complementary microstructural and chemical analyses of Sepia officinalis endoskeleton. Mater Sci Eng C 29:1220–1226CrossRefGoogle Scholar
  24. Foss A, Røsnes BA, Øiestad V (2003) Graded environmental hypercapnia in juvenile spotted wolfish (Anarhichas minor Olafsen): effects on growth, food conversion efficiency and nephrocalcinosis. Aquaculture 220:607–617CrossRefGoogle Scholar
  25. le Goff R, Gauvrit E, Du Sel GP, Daguzan J (1998) Age group determination by analysis of the cuttlebone of the cuttlefish Sepia officinalis. J Moll Stud 64:183–193CrossRefGoogle Scholar
  26. Gutowska MA, Pörtner HO, Melzner F (2008) Growth and calcification in the cephalopod Sepia officinalis under elevated seawater pCO2. Mar Ecol Prog Ser 373:303–309CrossRefGoogle Scholar
  27. Gutowska MA, Melzner F, Langenbuch M, Bock C, Claireaux G, Pörtner HO (2010) Acid-base regulatory ability of the cephalopod (Sepia officinalis) in response to environmental hypercapnia. J Comp Physiol B 180:323–335CrossRefGoogle Scholar
  28. Hall KC, Fowler AJ, Geddes MC (2007) Evidence for multiple year classes of the giant Australian cuttlefish Sepia apama in northern Spencer Gulf, South Australia. Rev Fish Biol Fish 17:367–384CrossRefGoogle Scholar
  29. Hare PE, Abelson PH (1965) Amino acid composition of some calcified proteins. Carnegie Instn Wash Yb 64:223–232Google Scholar
  30. Hayashi M, Kita J, Ishimatsu A (2004) Acid-base responses to lethal aquatic hypercapnia in three marine fishes. Mar Biol 144:153–160CrossRefGoogle Scholar
  31. Hosfeld CD, Engevik A, Mollan T, Lunde TM, Waagbo R, Olsen AB, Breck O, Stefansson S, Fivelstad S (2008) Long-term separate and combined effects of environmental hypercapnia and hyperoxia in Atlantic salmon (Salmo salar L.) smolts. Aquaculture 280:146–153CrossRefGoogle Scholar
  32. Larsen BK, Pörtner HO, Jensen FB (1997) Extra- and intracellular acid-bases balance and ionic regulation in cod (Gadus morhua) during combined and isolated exposures to hypercapnia and copper. Mar Biol 128:337–346CrossRefGoogle Scholar
  33. Lenfant C, Aucutt C (1966) Measurement of blood gases by gas chromatography. Resp Physiol 1:398–407CrossRefGoogle Scholar
  34. Lewis E, Wallace DWR (1998) Program developed for CO2 system calculations. ORNL/CDIAC-105, carbon dioxide information analysis center, Oak Ridge National Laboratory, Oak Ridge, TN. Available at: http://cdiac.esd.ornl.gov/oceans/co2rprt.html
  35. Lindinger MI, Lauren DJ, McDonald DG (1984) Acid–base balance in the sea mussel, Mytilus edulis. III. Effects of environmental hypercapnia on intra- and extracellular acid–base balance. Mar Biol Let 5:371–381Google Scholar
  36. Marie B, Marin F, Marie A, Bedouet L, Dubost L, Alcaraz G, Milet C, Luquet G (2009) Evolution of nacre: biochemistry and proteomics of the shell organic matrix of the cephalopod Nautilus macromphalus. Chembiochem 10:1495–1506CrossRefGoogle Scholar
  37. Marin F, Luquet G (2004) Molluscan shell proteins. Comptes Rendus Palevol. 3:469–490CrossRefGoogle Scholar
  38. Marin F, Corstjens P, de Gaulejac B, Vrind-DE Jong ED, Westbroek P (2000) Muscins and molluscan calcification–Molecular characterization of mucoperlin, a novel mucin-like protein from the nacreous shell layer of the fan mussel Pinna nobilis (Bivalvia, Pteriomorphia). J Biol Chem 275:20667–20675CrossRefGoogle Scholar
  39. Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907CrossRefGoogle Scholar
  40. Melzner F, Göbel S, Langenbuch M, Gutowska MA, Pörtner HO, Lucassen M (2009a) Effects of long-term hypercapnic exposure on cod (Gadus morhua) swimming performance, metabolism and gill Na+/K+ -ATPase. Aquat Tox 92:30–37CrossRefGoogle Scholar
  41. Melzner F, Gutowska MA, Langenbuch M, Dupont S, Lucassen M, Thorndyke M, Bleich M, Pörtner HO (2009b) Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences 6:2313–2331Google Scholar
  42. Michaelidis B, Ouzounis C, Paleras A, Pörtner HO (2005) Effects of long-term moderate hypercapnia on acid-base balance and growth in marine mussel Mytilus galloprovincialis. Mar Ecol Prog Ser 293:109–118CrossRefGoogle Scholar
  43. Michaelidis B, Spring A, Pörtner HO (2007) Effects of long-term acclimation to environmental hypercapnia on extracellular acid-base status and metabolic capacity in Mediterranean fish Sparus aurata. Mar Biol 150:1417–1429CrossRefGoogle Scholar
  44. Neige P, Boletzky SV (1997) Morphometrics of the shell of three Sepia species (Mollusca: Cephalopoda): intra- and interspecific variation. Zool Beitr N F 2:137–156Google Scholar
  45. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A et al (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686CrossRefGoogle Scholar
  46. Pane EF, Barry JP (2007) Extracellular acid-base regulation during short-term hypercapnia is effective in a shallow-water crab, but ineffective in a deep-sea crab. Mar Ecol Prog Ser 334:1–9CrossRefGoogle Scholar
  47. Pörtner HO (2008) Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Mar Ecol Prog Ser 373:203–217CrossRefGoogle Scholar
  48. Pörtner HO, Boutilier RG, Tang Y, Toews DP (1990) Determination of intracellular pH and pCO2 after metabolic inhibition by fluoride and nitrilotriacetic acid. Resp Physiol 81:255–274CrossRefGoogle Scholar
  49. Pörtner HO, Langenbuch M, Reipschläger A (2004) Biological impact of elevated ocean CO2 concentration: lessons from animal physiology and Earth history. J Oceanogr 60:705–718CrossRefGoogle Scholar
  50. Ries JB, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37:1131–1134CrossRefGoogle Scholar
  51. Seibel BA, Walsh PJ (2003) Biological impacts of deep-sea carbon dioxide injection inferred from indices of physiological performance. J Exp Biol 206:641–650CrossRefGoogle Scholar
  52. Sherrard K (2000) Cuttlebone morphology limits habitat depth in eleven species of Sepia (Cephalopoda: Sepiidae). Biol Bull 198:404–414CrossRefGoogle Scholar
  53. Shirayama Y, Thornton H (2005) Effects of increased atmospheric CO2 on shallow water marine benthos. J Geo Res 110:C09S08Google Scholar
  54. Spicer JI, Raffo A, Widdicombe S (2007) Influence of CO2 related seawater acidification on extracellular acid-base balance in the velvet swimming crab Necora puber. Mar Biol 151:1117–1125CrossRefGoogle Scholar
  55. Toews DP, Holeton GF, Heisler N (1983) Regulation of the acid-base status during environmental hypercapnia in the marine teleost fish Conger conger. J Exp Biol 107:9–20Google Scholar
  56. Tompsett DH (1939) Sepia. L.M.B.C. Memoirs on typical british marine plants and animals. University Press of Liverpool, LiverpoolGoogle Scholar
  57. Truchot JP (1984) Water carbonate alkalinity as a determinant of hemolymph acid-base balance in the shore crab, Carcinus maenas, a study at two different ambient pCO2 and pO2 levels. J Comp Physiol 154:601–606Google Scholar
  58. Vandeputte M, Dupont-Nivet M, Haffray P, Chavanne H, Cenadelli S, Parati K, Vidal MO, Bergnet A, Chatain B (2009) Response to domestication and selection for growth in the European sea bass (Dicentrarchus labrax) in separate and mixed tanks. Aquaculture 286:20–27CrossRefGoogle Scholar
  59. Ward P, Boletzky SV (1984) Shell implosion depth and implosion morphologies in three species of Sepia (Cephalopoda) from the Mediterranean Sea. J Mar Biol Assoc UK 64:955–966CrossRefGoogle Scholar
  60. Webber DM, Aitken J, O’Dor RK (2000) Costs of vertical locomotion and vertical dynamics of cephalopods and fish. Physiol Biochem Zool 73:651–662CrossRefGoogle Scholar
  61. Weiner S (1979) Aspartic acid-rich proteins major components of the soluble organic matrix of mollusk shells. Calc Tiss Int 29:163–167CrossRefGoogle Scholar
  62. Weiner S, Traub W (1984) Macromolecules in mollusc shells and their functions in biomineralization. Phil Trans R Soc Lond B 304:425–434CrossRefGoogle Scholar
  63. Wendling J (1987) On the buoyancy system of Sepia officinalis L. (Cephalopoda). Dissertation, University of Basel, SwitzerlandGoogle Scholar
  64. Westermann B, Schmidtberg H, Beuerlein K (2005) Functional morphology of the mantle of Nautilus pompilius (Mollusca, Cephalopoda). J Morph 264:277–285CrossRefGoogle Scholar
  65. Wiedmann J, Boletzky S (1982) Wachstum und Differenzierung des Schulps von Sepia officinialis unter künstlichen Aufzuchtbedingungen–Grenzen der Anwendung im palökologischen Modell. N J Geol Pal Abh 164:118–133Google Scholar
  66. Wilt FH, Killian CE, Livingston BT (2003) Development of calcareous skeletal elements in invertebrates. Differentiation 71:237–250CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Magdalena A. Gutowska
    • 1
    • 4
  • Frank Melzner
    • 2
  • Hans O. Pörtner
    • 1
  • Sebastian Meier
    • 3
  1. 1.Alfred-Wegener-Institute for Polar and Marine ResearchBremerhavenGermany
  2. 2.Leibniz-Institute of Marine Sciences, IFM-GEOMAR, Biological OceanographyKielGermany
  3. 3.Christian Albrechts University, Institute of GeosciencesKielGermany
  4. 4.Christian Albrecht University, Institute of PhysiologyKielGermany

Personalised recommendations