Marine Biology

, Volume 157, Issue 5, pp 991–1001 | Cite as

Defining length-at-metamorphosis in fishes: a multi-character approach

  • Nikolaos Nikolioudakis
  • George Koumoundouros
  • Sotiris Kiparissis
  • Stylianos SomarakisEmail author
Original Paper


The present study attempts to highlight the value of multi-character approaches for defining thresholds in fish ontogeny, like the onset of the juvenile period. We developed techniques to objectively define the transition from larval to juvenile development using morphometric as well as morphological characters and exemplify the multi-character approach on newly settled white sea-breams (Diplodus sargus sargus) collected from the eastern Mediterranean. The morphometric analysis was based on principles of multivariate allometry whereas the analysis of morphology, on assigning a suite of selected characters (here related to external morphology and osteological development) into larval, transforming and juvenile states. The size-at-change in multivariate allometric growth (L m) is considered here to denote mean length-at-metamorphosis. An almost perfect match is demonstrated between L m (‘multivariate morphometry’) and mean size-at-morphological change (‘multivariate morphology’) in white sea-bream.


Standard Length Morphometric Character Allometric Growth Oblique Orientation Juvenile Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the European Social Fund (ESF), Operational Program for Educational and Vocational Training II (EPEAEK II), and particularly the Program PYTHAGORAS II, for funding this work. The authors thank E. Schismenou, Dr. S. Isari and Dr. A. Ramfos for their assistance in field sampling and laboratory analysis, and E. Georgakopoulou for her help with fish staining. Acknowledgements are also given to Dr. U. Sommer and two other anonymous referees for valuable comments regarding this manuscript. This study fully complies with the current laws of Greece.


  1. Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophoton 11:36–42Google Scholar
  2. Almany GR, Webster MS (2006) The predation gauntlet: early post-settlement mortality in reef fishes. Coral Reefs 25:19–22. doi: 10.1007/s00338-005-0044-y CrossRefGoogle Scholar
  3. Balon EK (1999) Alternative ways to become a juvenile or a definitive phenotype (and on some persisting linguistic offenses). Environ Biol Fish 56:17–38. doi: 10.1023/A:1007502209082 CrossRefGoogle Scholar
  4. Boglione C, Giganti M, Selmo C, Cataudella S (2003) Morphoecology in larval fin-fish: a new candidate species for aquaculture, Diplodus puntazzo (Sparidae). Aquacult Int 11:17–41. doi: 10.1023/A:1024119032359 CrossRefGoogle Scholar
  5. Bradford MJ (1992) Precision of recruitment predictions from early life stages of marine fishes. Fish Bull 90:439–453Google Scholar
  6. Bryan PG, Madraisau BB (1977) Larval rearing and development of Siganus lineatus (Pisces: Siganidae) from hatching through metamorphosis. Aquaculture 10:243–252. doi: 10.1016/0044-8486(77)90005-9 CrossRefGoogle Scholar
  7. Cadrin SX (2000) Advances in morphometric identification of fishery stocks. Rev Fish Biol Fisher 10:91–112. doi: 10.1023/A:1008939104413 CrossRefGoogle Scholar
  8. Carr MH, Hixon MA (1995) Predation effects on early post-settlement survivorship of coral-reef fishes. Mar Ecol Prog Ser 124:31–42. doi: 10.3354/meps124031 CrossRefGoogle Scholar
  9. Copp GH, Kováč V (1996) When do fish with indirect development become juveniles? Can J Fish Aquat Sci 53:746–752. doi: 10.1139/cjfas-53-4-74 CrossRefGoogle Scholar
  10. Ditty JG, Fuiman LA, Shaw RF (2003) Characterizing natural intervals of development in fishes: an example using blennies (Teleostei: Blenniidae). In: The big fish bang: proceedings of the 26th annual larval fish conference, Bergen, pp 405–418Google Scholar
  11. Efron B, Tibshirani R (1986) Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statist Sci 1:54–75. doi: 10.1214/ss/1177013815 CrossRefGoogle Scholar
  12. Elbal MT, Hernandez MPG, Lozano MT, Agulleiro B (2004) Development of the digestive tract of gilthead sea bream (Sparus aurata L.). Light and electron microscopic studies. Aquaculture 234:215–238. doi: 10.1016/j.aquaculture.2003.11.028 CrossRefGoogle Scholar
  13. Fryer RJ (1991) A model of between-haul variation in selectivity. ICES J Mar Sci 48:281–290. doi: 10.1093/icesjms/48.3.281 CrossRefGoogle Scholar
  14. Fuiman LA (1983) Growth gradients in fish larvae. J Fish Biol 23:117–123. doi: 10.1111/j.1095-8649.1983.tb02886.x CrossRefGoogle Scholar
  15. Fuiman LA (1994) The interplay of ontogeny and scaling in the interactions of fish larvae and their predators. J Fish Biol 45((Suppl A)):55–79. doi: 10.1006/jfbi.1994.1214 CrossRefGoogle Scholar
  16. Fuiman LA (2002) Special considerations of fish eggs and larvae. In: Fuiman LA, Werger RG (eds) Fishery science: the unique contributions of early life stages. Blackwell Science, Oxford, pp 1–32Google Scholar
  17. Fuiman LA, Higgs DM (1997) Ontogeny, growth, and the recruitment process. In: Chambers RC, Trippel EA (eds) Early life history and recruitment in fish populations. Chapman and Hall, London, pp 225–249Google Scholar
  18. Fuiman LA, Poling KR, Higgs DM (1998) Quantifying developmental progress for comparative studies of larval fishes. Copeia 3:602–611. doi: 10.2307/1447790 CrossRefGoogle Scholar
  19. Gisbert E, Merino G, Muguet JB, Bush D, Piedrahita RH, Conklin DE (2002) Morphological development and allometric growth patterns in hatchery-reared California halibut larvae. J Fish Biol 61:1217–1229. doi: 10.1111/j.1095-8649.2002.tb02466.x CrossRefGoogle Scholar
  20. Gozlan RE, Copp GH, Tourenq JN (1999) Comparison of growth plasticity in the laboratory and field, and implications for the onset of juvenile development in sofie, Chondrostoma toxostoma. Environ Biol Fish 56:153–165. doi: 10.1023/A:1007577321999 CrossRefGoogle Scholar
  21. Higgs DM, Fuiman LA (1998) Associations between sensory development and ecology in three species of clupeoid fish. Copeia 1:133–144. doi: 10.2307/1447709 CrossRefGoogle Scholar
  22. Houde ED (1987) Fish early life dynamics and recruitment variability. In: 10th annual larval fish conference, Am Fish Soc Symp 2:17–29Google Scholar
  23. Huxley J (1932) Problems of relative growth. New York Dial Press, New YorkGoogle Scholar
  24. Jolicoeur P (1963a) The multivariate generalization of the allometry equation. Biometrics 19:497–499. doi: 10.2307/2527939 CrossRefGoogle Scholar
  25. Jolicoeur P (1963b) The degree of generality of robustness in Martes americana. Growth 27:1–27Google Scholar
  26. Juanes F, Conover DO (1994) Rapid growth, high feeding rates, and early piscivory in young-of-the-year bluefish (Pomatomus saltatrix). Can J Fish Aquat Sci 51:1752–1761. doi: 10.1139/f94-176 CrossRefGoogle Scholar
  27. Kanou K, Kohno H, Sano M (2004) Morphological and functional development of characters associated with settlement in the yellowfin goby, Acanthogobius flavimanus. Ichthyol Res 51:213–221. doi: 10.1007/s10228-004-0217-7 Google Scholar
  28. Keefe M, Able KW (1993) Patterns of metamorphosis in summer flounder, Paralichthys dentatus. J Fish Biol 42:713–728. doi: 10.1111/j.1095-8649.1993.tb00380.x CrossRefGoogle Scholar
  29. Klingenberg CP, Froese R (1991) A multivariate comparison of allometric growth patterns. Syst Zool 40:410–419. doi: 10.2307/2992236 CrossRefGoogle Scholar
  30. Koumoundouros G, Divanach P, Kentouri M (1999) Ontogeny and allometric plasticity of Dentex dentex (Osteichthyes: Sparidae) in rearing conditions. Mar Biol 135:561–572. doi: 10.1007/s002270050657 CrossRefGoogle Scholar
  31. Koumoundouros G, Divanach P, Anezaki L, Kentouri M (2001) Temperature-induced ontogenetic plasticity in sea bass (Dicentrarchus labrax). Mar Biol 139:817–830. doi: 10.1007/s002270100635 CrossRefGoogle Scholar
  32. Koumoundouros G, Ashton C, Giopanou I, Ksenikoudakis G, Georgakopoulou E, Stickland NC (2009) Ontogenetic differentiation of swimming performance in gilthead sea bream (Sparus aurata, Linnaeus 1758) during metamorphosis. J Exp Mar Biol Ecol 370:75–81. doi: 10.1016/j.jembe.2008.12.001 CrossRefGoogle Scholar
  33. Kováč V (2002) Synchrony and heterochrony in ontogeny (of fish). J Theor Biol 217:499–507. doi: 10.1006/jtbi.2002.3043 CrossRefPubMedGoogle Scholar
  34. Kováč V, Copp GH (1999) Prelude: looking at early development in fishes. Environ Biol Fish 56:7–14. doi: 10.1023/A:1007546711019 CrossRefGoogle Scholar
  35. Kováč V, Copp GH, Francis MP (1999) Morphometry of the stone loach, Barbatula barbatula: do mensural characters reflect the species’ life history thresholds? Environ Biol Fish 56:105–115. doi: 10.1023/A:1007570716690 CrossRefGoogle Scholar
  36. Kováč V, Katina S, Copp GH, Siryova S (2006) Ontogenetic variability in external morphology and microhabitat use of spirlin Alburnoides bipunctatus from the River Rudava (Danube catchment). J Fish Biol 68:1257–1270. doi: 10.1111/j.1095-8649.2006.01007.x CrossRefGoogle Scholar
  37. Leis JM (2006) Are larvae of demersal fishes plankton or nekton? Adv Mar Biol 51:57–141. doi: 10.1016/S0065-2881(06)51002-8 CrossRefPubMedGoogle Scholar
  38. Loy A, Bertelletti M, Costa C, Ferlin L, Cataudella S (2001) Shape changes and growth trajectories in the early stages of three species of the genus Diplodus (Perciformes, Sparidae). J Morphol 250:24–33. doi: 10.1002/jmor.1056 CrossRefPubMedGoogle Scholar
  39. Macpherson E, Biagi F, Francour P, Garcia-Rubies A, Harmelin J, Harmelin-Vivien M, Jouvenel JY, Planes S, Vigliola L, Tunesi L (1997) Mortality of juvenile fishes of the genus Diplodus in protected and unprotected areas in the western Mediterranean Sea. Mar Ecol Prog Ser 160:135–147. doi: 10.3354/meps160135 CrossRefGoogle Scholar
  40. McCormick MI, Makey L, Dufour V (2002) Comparative study of metamorphosis in tropical reef fishes. Mar Biol 141(5):841–853. doi: 10.1007/s00227-002-0883-9 CrossRefGoogle Scholar
  41. Nikolioudakis N, Kiparissis S, Koumoundouros G, Somarakis S (2007) Allometric somatic growth patterns and otolith shape changes in Diplodus sargus (Linnaeus, 1758) during metamorphosis. Rapp Comm Int Mer Medit 38:554Google Scholar
  42. Osse JWM, van den Boogaart JGM (1995) Fish larvae, development, allometric growth and the aquatic environment. ICES Mar Sci 201:21–34Google Scholar
  43. Park EH, Kim DS (1984) A procedure for staining cartilage and bone of whole vertebrate larvae while rendering all other tissues transparent. Stain Technol 59:269–272. doi: 10.3109/10520298409113869 PubMedGoogle Scholar
  44. Petrakis G, Stergiou KI (1997) Size selectivity of diamond and square mesh codends for four commercial Mediterranean fish species. ICES J Mar Sci 54:13–23. doi: 10.1006/jmsc.1996.0172 CrossRefGoogle Scholar
  45. Russo T, Pulcini D, Bruner E, Cataudella S (2009) Shape and size variation: growth and development of the dusky grouper (Epinephelus marginatus Lowe, 1834). J Morphol 270:83–96. doi: 10.1002/jmor.10674 CrossRefPubMedGoogle Scholar
  46. Sagnes P, Gaudin P, Statzner B (1997) Shifts in morphometrics and their relation to hydrodynamic potential and habitat use during grayling ontogenesis. J Fish Biol 50:846–858. doi: 10.1006/jfbi.1996.0353 CrossRefGoogle Scholar
  47. Sediva A, Kováč V, Copp GH (2000) Growth variability of morphometric characters in perch Perca fluviatilis and its relation to microhabitat use. Folia Zool 49:123–132Google Scholar
  48. Sfakianakis DG, Koumoundouros G, Divanach P, Kentouri M (2004) Osteological development of the vertebral column and of the fins in Pagellus erythrinus (L. 1758). Temperature effect on the developmental plasticity and morpho-anatomical abnormalities. Aquaculture 232:407–424. doi: 10.1016/j.aquaculture.2003.08.014 CrossRefGoogle Scholar
  49. Shea BT (1985) Bivariate and multivariate growth allometry: statistical and biological considerations. J Zool 206:367–390. doi: 10.1111/j.1469-7998.1985.tb05665.x CrossRefGoogle Scholar
  50. Simonovič PD, Garner P, Eastwood EA, Kováč V, Copp GH (1999) Correspondence between ontogenetic shifts in morphology and habitat use in minnow Phoxinus phoxinus. Environ Biol Fish 56:117–128. doi: 10.1023/A:1007541915307 CrossRefGoogle Scholar
  51. Sissenwine MP (1984) Why do fish populations vary? In: May RM (ed) Exploitation of marine communities. Dahlem Konferenzen, New York, pp 59–94Google Scholar
  52. Smith PE (1985) Year class strength and survival of 0-group clupeoids. Can J Fish Aquat Sci 42:69–82. doi: 10.1139/f85-263 CrossRefGoogle Scholar
  53. Thorisson K (1994) Is metamorphosis a critical interval in the early life of marine fishes? Environ Biol Fish 40:23–36. doi: 10.1007/BF00002180 CrossRefGoogle Scholar
  54. Urho L (2002) Characters of larvae—what are they? Folia Zool 51:161–186Google Scholar
  55. van der Veer HW, Bergman MJN (1987) Predation by crustaceans on a newly settled 0-group plaice Pleuronectes platessa populations in the western Wadden Sea. Mar Ecol Prog Ser 35:203–215. doi: 10.3354/meps035203 CrossRefGoogle Scholar
  56. van Snik GMJ, van den Boogaart JGM, Osse JWM (1997) Larval growth patterns in Cyprinus caprio and Clarias gariepinus with the attention to the finfold. J Fish Biol 50:1339–1352. doi: 10.1111/j.1095-8649.1997.tb01657.x CrossRefGoogle Scholar
  57. Vigliola L, Harmelin-Vivien M (2001) Post-settlement ontogeny in three Mediterranean reef fish species of the genus Diplodus. Bull Mar Sci 68:271–286Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Nikolaos Nikolioudakis
    • 1
    • 2
  • George Koumoundouros
    • 2
  • Sotiris Kiparissis
    • 3
  • Stylianos Somarakis
    • 1
    Email author
  1. 1.Hellenic Centre for Marine ResearchInstitute of Marine Biological ResourcesHeraklion, CreteGreece
  2. 2.Department of BiologyUniversity of CreteHeraklion, CreteGreece
  3. 3.Department of Aquaculture and Fisheries TechnologyTechnological Educational Institute of MessolonghiMessolonghiGreece

Personalised recommendations