Marine Biology

, Volume 157, Issue 5, pp 967–977 | Cite as

Growth pattern of the sea urchin, Loxechinus albus (Molina, 1782) in southern Chile: evaluation of growth models

  • Luis FloresEmail author
  • Billy Ernst
  • Ana M. Parma
Original Paper


The growth pattern of Loxechinus albus in southern Chile was studied using size-at-age data obtained by reading growth bands on the genital plates. The scatter plots of sizes-at-age for samples collected in three different locations indicated that growth is linear between ages 2 and 10. Five different growth models, including linear, asymptotic and non-asymptotic functions, were fitted to the data, and model selection was conducted based on the Akaike information criteria (AIC) and the Bayesian information criteria (BIC). The AIC identified the Tanaka model as the most suitable for two of the three sites. However, the BIC led to the selection of the linear model for all zones. Our results show that the growth pattern of L. albus is different from the predominantly asymptotic pattern that has been reported for other sea urchin species.


Akaike Information Criterion Asymptotic Model Bayesian Information Criterion Average Percent Error Genital Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Luis Flores is thankful to CONICYT, Escuela de Graduados (UDEC), and CREO grant. We thank Manira Matamala (Consultora Pupelde) and her staff in Quellon as well as Victor Acuña and his family from Melinka for their hospitality and collaboration during the fieldwork. LF is thankful to Paulina Gebauer who kindly provided initial training in genital plate reading. Finally, we want to thank Lobo Orensanz, Carlos Molinet, and Victor Ruiz for actively participating in the 2007 scientific cruise to the Chonos archipelago in the LM Ayayay research boat.


  1. Agatsuma Y, Nakata A (2004) Age determination, reproduction and growth of the sea urchin Hemicentrotus pulcherrimus in Oshoro Bay, Hokkaido, Japan. J Mar Biol Assoc UK 84:401–405CrossRefGoogle Scholar
  2. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petran BN, Csaaki F (eds) International symposium on information theory, 2nd edn. Acadeemiai Kiadi, Budapest, pp 267–281Google Scholar
  3. Andrew N, Agatsuma Y, Ballesteros E, Bazhin A, Creaser E, Barnes D, Botsford L et al (2002) Status and Management of World Sea Urchin Fisheries. Oceanogr Mar Biol A Rev 40:343–425Google Scholar
  4. Barahona N, Jerez G (1997) La pesquería del erizo (Loxechinus albus) en las regiones X a XII de Chile: 13 años de historia (1985–1997). In: Resúmenes XII Congreso de Ciencias del Mar (Chile), 14 ppGoogle Scholar
  5. Barahona N, Orensanz JM, Parma A, Jerez G, Romero C, Miranda H, Zuleta A, Cataste V, Gálvez P (2003) Bases biológicas para rotación de áreas en el recurso erizo. Informe Final. Fondo de Investigación Pesquera, Proyecto FIP No. 2000–18, 197 pages, tables, figures, appendices. Instituto de Fomento Pesquero (IFOP), ValparaísoGoogle Scholar
  6. Blicher ME, Rysgaard S, Sejr MK (2007) Growth and production of sea urchin Strongylocentrotus droebachiensis in a high-Arctic fjord, and growth along a climatic gradient (64 to 77°N). Mar Ecol Prog Ser 341:89–102CrossRefGoogle Scholar
  7. Botsford LW, Quinn JF, Wing SR, Brittnacher JG (1993) Rotating spatial harvest of a benthic invertebrate, the red sea urchin Strongylocentrotus franciscanus. In: Kruse G, Eggers DM, Marasco RJ, Pautzke C, Quinn TJ II (eds) Proceedings of the international symposium on management strategies of exploited fish population. University of Alaska, Fairbanks, pp 408–429Google Scholar
  8. Botsford LW, Smith BD, Quinn JF (1994) Bimodality in size distribution: the red sea urchin Strongylocentrotus franciscanus as an example. Ecol Appl 4:42–50CrossRefGoogle Scholar
  9. Brady SM, Scheibling RE (2006) Changes in growth and reproduction of green sea urchins, Strongylocentrotus droebachiensis (Muller), during repopulation of the shallow subtidal zone after mass mortality. J Exp Mar Biol Ecol 335:277–291CrossRefGoogle Scholar
  10. Bromaghin JF (1993) Sample size determination for interval estimation of multinomial probabilities. Am Stat 47(3):203–206CrossRefGoogle Scholar
  11. Brouwer SL, Griffiths MH (2005) Influence of sample design on estimate of growth and mortality in Argyrozona argyrozona (Pisces: Sparidae). Fish Res 74:44–54CrossRefGoogle Scholar
  12. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information—theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  13. Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Methods Res 22(2):261–304CrossRefGoogle Scholar
  14. Campana S (2001) Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. J Fish Biol 59:197–242CrossRefGoogle Scholar
  15. Campana SE, Annand MC, McMillan JI (1995) Graphical and statistical methods for determining the consistency of age determinations. Trans Am Fish Soc 124:131–138CrossRefGoogle Scholar
  16. Cellario Ch, Fenauz L (1990) Paracentrotus lividus (Lamarck) in culture (larval and benthic phases): parameters of growth observed during two years following metamorphosis. Aquaculture 84:173–188CrossRefGoogle Scholar
  17. Chen Y (1996) A Monte Carlo study on impacts of the size of subsample catch on estimation of the fish stock parameters. Fish Res 26:207–223CrossRefGoogle Scholar
  18. Chen Y, Chen L, Stergiou KI (2003) Impacts of data quantity on fisheries stock assessment. Aquat Sci 65:92–98CrossRefGoogle Scholar
  19. Comely CA, Ansell AD (1988) Population density and growth of Echinus esculentus L. on the Scottish west coast. Estuar Coast Shelf Sci 29:311–334CrossRefGoogle Scholar
  20. Cope JM, Punt AE (2007) Admitting ageing error when fitting growth curves: an example using the von Bertalanffy growth function with random effects. Can J Fish Aquat Sci 64:205–218CrossRefGoogle Scholar
  21. Crapp GB, Willis ME (1975) Age determination in the sea urchin Paracentrotus lividus (Lamarck), with notes on the reproductive cycle. J Exp Mar Biol Ecol 20:157–178CrossRefGoogle Scholar
  22. Dafni J (1992) Growth rate of the sea urchin Tripneustes gratilla elatensis. Israel J Zool 38:25–33Google Scholar
  23. Duran L, Falcón C, Gálvez M, Godoy C, Melo C, Oliva D (1999) Elaboración de claves talla-edad para el recurso erizo. Proyecto FIP No. 1997–30, 197 pp, tables, figures, appendices. Instituto de Fomento Pesquero (IFOP), ValparaísoGoogle Scholar
  24. Ebert TA (1999) Plant and animal population methods in demography. Academic Press, San DiegoGoogle Scholar
  25. Ebert TA, Russell MP (1992) Growth and mortality estimates for red sea urchin, Strongylocentrotus franciscanus, from San Nicolas Island, California. Mar Ecol Prog Ser 81:31–41CrossRefGoogle Scholar
  26. Ebert TA, Russell MP (1993) Growth and mortality of subtidal red sea urchin (Strongylocentrotus franciscanus) at San Nicolas Island, California, USA: problems with models. Mar Biol 117:79–89CrossRefGoogle Scholar
  27. Ebert TA, Southon JR (2003) Red sea urchin (Strongylocentrotus franciscanus) can live over 100 years: confirmation with A-bomb 14carbon. Fish Bull 101(4):915–922Google Scholar
  28. Ebert TA, Dixon JD, Schroeter SC, Kalvass PE, Richmond NT, Bradbury WA, Woodby DA (1999) Growth and mortality of red sea urchins (Storngylocentrotus franciscanus) across a latitudinal gradient. Mar Ecol Prog Ser 190:189–209CrossRefGoogle Scholar
  29. Fletcher RI (1974) The quadratic law of damped exponential growth. Biometrics 30:111–124CrossRefGoogle Scholar
  30. Fuji A (1967) Ecological studies on the growth and food consumption of Japanese common littoral sea urchin, Strongylocentrotus intermedius (A. Agassiz). Mec Fac Fish Hokkaido Univ 15(2):83–160Google Scholar
  31. Gage JD (1987) Growth of the deep-sea irregular sea urchins Echinosigra phiale and Hemiaster expergitus in the Rockall Trough (N.E. Atlantic Ocean). Mar Biol 96:19–30CrossRefGoogle Scholar
  32. Gage JD (1992) Natural growth bands and growth variability in the sea urchins Echinus esculentus: results from tetracycline tagging. Mar Biol 114:607–616CrossRefGoogle Scholar
  33. Gage JD, Tyler PA (1985) Growth and recruitment of the deep-sea urchin Echinus affinis. Mar Biol 90:41–53CrossRefGoogle Scholar
  34. Gage JD, Tyler PA, Nichols D (1986) Reproduction and growth of Echinus acutus var. norvegicus Duber & Koren and E. elegans Duber & Koren on the continental slope off Scotland. J Exp Mar Biol Ecol 101:61–83CrossRefGoogle Scholar
  35. Gebauer P (1992) Validación experimental de los anillos de crecimiento de Loxechinus albus (Molina, 1782) (Echinodermata: Echinoidea) en la reserve marina de Mehuin. Chile. Tesis, Esc. Biología Marina, Univ. Austral de Chile. 66 ppGoogle Scholar
  36. Gebauer P, Moreno CA (1995) Experimental validation of the growth rings of Loxechinus albus (Molina, 1782) in southern Chile (Echinodermata: Echinoidea). Fish Res 21:423–435CrossRefGoogle Scholar
  37. Grosjean Ph (2001) Growth model of reared sea urchin Paracentrotus lividus (Lamarck, 1816). Ph.D. thesis, Universite Libre de Bruxelles, BélgicaGoogle Scholar
  38. Grosjean Ph, Spirlet Ch, Jangoux M (2003) A functional growth model with intraspecific competition applied to a sea urchin, Paracentrotus lividus. Can J Fish Aquat Sci 60:237–246CrossRefGoogle Scholar
  39. Katsanevakis S, Maravelias CD (2008) Modelling fish growth: multi-model inference as a better alternative to a priori using von Bertalanffy equation. Fish Fish 9:178–187Google Scholar
  40. Keesing JK, Hall KC (1998) Review of harvests and status of world’s sea urchin fisheries points to opportunities for aquaculture. J Shellfish Res 17:1597–1604Google Scholar
  41. Kenner MC (1992) Population dynamics of the sea urchin Strongylocentrotus purpuratus in a central California kelp forest: recruitment, mortality, growth, and diet. Mar Biol 112:107–118CrossRefGoogle Scholar
  42. Lai HL, Gunderson DR (1987) Effects of ageing errors on estimates of growth, mortality and yield per recruit for walleye Pollock (Theragra chalcogramma). Fish Res 5:287–302CrossRefGoogle Scholar
  43. Lamare MD, Mladenov PH (2000) Modelling somatic growth in the sea urchin Evechinus chloroticus (Echinoidea: Echinometridae). J Exp Mar Biol Ecol 243:17–43CrossRefGoogle Scholar
  44. Moreno CA, Barahona N, Molinet C, Orensanz JM, Parma A, Zuleta A (2007) From crisis to institutional sustainability in the Chilean Sea Urchin Fishery, chap 3. In: McClanahan TR, Castilla JC (eds) Fisheries management: progress towards sustainability. Blackwell Publishing, Oxford, pp 43–64Google Scholar
  45. Morgan LE, Botsford LW, Wing SR, Smith BD (2000) Spatial variability in growth and mortality of the red sea urchin Strongylocentrotus franciscanus, in northern California. Can J Fish Aquat Sci 57:980–992CrossRefGoogle Scholar
  46. Nichols D, Sime AAT, Bishop GM (1985) Growth in populations of the sea urchin Echinus esculentus L. (Echinodermata: Echinoidea) from the English Channel and firth of Clyde. J Exp Mar Biol Ecol 86:219–228CrossRefGoogle Scholar
  47. Ohnishi S, Akamine T (2006) Extension of von Bertalanffy growth model incorporating growth patterns of soft and hard tissues in bivalve mollusks. Fish Sci 72:787–795CrossRefGoogle Scholar
  48. Orensanz JM, Parma AM, Jerez G, Barahona N, Montecinos M, Elias I (2005) What are the key elements for the sustainability of “S-Fisheries”? Insights from South America. Bull Mar Sci 76:527–556Google Scholar
  49. Quinn TJ, Deriso RB (1999) Quantitative fish dynamics. Oxford University Press, New YorkGoogle Scholar
  50. Quinn JF, Wing SR, Botsford LW (1993) Harvest refugia in marine invertebrate fisheries: models and applications to red sea urchin Strongylocentrotus franciscanus. Amer Zool 33:537–550Google Scholar
  51. Richards FJ (1959) A flexible growth function for empirical use. J Exp Bot 10:290–300CrossRefGoogle Scholar
  52. Rogers-Bennett L, Rogers DW, Bennett WA, Ebert TA (2003) Modeling red sea urchin (Strongylocentrotus franciscanus) growth using six growth functions. Fish Bull 101(3):614–626Google Scholar
  53. Rowley RJ (1990) Newly settled sea urchins in a kelp bed and urchin barren ground: a comparison of growth and mortality. Mar Ecol Prog Ser 62:229–240CrossRefGoogle Scholar
  54. Russell MP (1987) Life history traits and resource allocation in the purple sea urchin Strongylocentrotus purpuratus (Stimpson). J Exp Mar Biol Ecol 108:199–216CrossRefGoogle Scholar
  55. Russell MP, Meredith RW (2000) Natural growth lines in echinoid ossicles are not reliable indicators of age: a test using (Strongylocentrotus droebachiensis). Invert Biol 119:410–420Google Scholar
  56. Schnute J (1981) A versatile growth model with statistically stable parameters. Can J Fish Aquat Sci 38:1128–1140CrossRefGoogle Scholar
  57. Schnute J, Fournier D (1980) A new approach to length-frequency analysis: growth structure. Can J Fish Aquat Sci 37:1337–1351CrossRefGoogle Scholar
  58. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464CrossRefGoogle Scholar
  59. Shelton AO, Woodby DA, Hebert K, Witman JD (2006) Evaluating age determination and spatial patterns of growth in Red Sea urchins in Southeast Alaska. Trans Am Fish Soc 135:1670–1680CrossRefGoogle Scholar
  60. Sime AAT, Cranmer GJ (1985) Age and growth of North Sea echinoids. J Mar Biol Assoc UK 65:583–588CrossRefGoogle Scholar
  61. Smith BD, Botsford LW, Wing SR (1998) Estimation of growth and mortality parameters from size frequency distribution lacking age patterns: the read sea urchin (Strongylocentrotus franciscanus) as an example. Can J Fish Aquat Sci 55:1236–1247CrossRefGoogle Scholar
  62. Soualili DL, Guillou M, Semroud R (1999) Age and growth of the echinoid Sphaerechinus granularis from the Algerian coast. J Mar Biol Assoc UK 79:1139–1140CrossRefGoogle Scholar
  63. Stotz W, González S, López C (1992) Siembra experimental del erizo rojo Loxechinus albus (Molina) en la costa expuesta del centro-norte: efectos del erizo negro Tetrapygas Níger (Molina) sobre la permanencia y crecimiento de juveniles. Invest Pesq (Chile) 37:107–117Google Scholar
  64. Tanaka M (1982) A new growth curve with expresses infinite incresase. Publ Amakusa Mar Biol Lab 6:167–177Google Scholar
  65. Turon X, Giribet G, Lopez S, Palacin C (1995) Growth and population structure of Paracentrotus lividus (Echinodermata: Echinoidea) in two contrasting habitats. Mar Ecol Prog Ser 122:193–204CrossRefGoogle Scholar
  66. Vadas RL, Smith B, Beal B, Dowling T (2002) Sympatric growth morphs and size bimodality in the green sea urchin (Strongylocentrotus droebachiensis). Ecol Monogr 72:113–132Google Scholar
  67. Von Bertalanffy L (1938) A quantitative theory of organic growth. Hum Biol 10:181–213Google Scholar
  68. Ward EJ (2008) A review and comparison of four commonly used Bayesian and maximum likelihood model selection tools. Ecol Model 211:1–10CrossRefGoogle Scholar
  69. Williams H (2002) Sea urchin fisheries of the world: a review of their status, management strategies and biology of the principal species. Draft background paper. Department of Primary Industries, Water and Environment. Tasmania. 27 ppGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Magíster en Ciencias c/m Pesquerías, Cabina 10, Departamento de OceanografíaUniversidad de ConcepciónConcepciónChile
  2. 2.Departamento de OceanografíaUniversidad de ConcepciónConcepciónChile
  3. 3.Centro de Investigación en Ecosistemas de la Patagonia (CIEP)ConcepciónChile
  4. 4.Centro Nacional Patagónico (CENPAT)Puerto MadrynArgentina
  5. 5.Instituto Nacional de PescaGuayaquilEcuador

Personalised recommendations