Marine Biology

, Volume 157, Issue 3, pp 683–688 | Cite as

Functional divergence in heat shock response following rapid speciation of Fucus spp. in the Baltic Sea

  • Asunción Lago-Lestón
  • Catarina Mota
  • Lena Kautsky
  • Gareth A. PearsonEmail author
Short Communication


In the Baltic Sea, the broadly distributed brown alga Fucus vesiculosus coexists in sympatry over part of its range (south west Gulf of Bothnia) with the Baltic endemic F. radicans sp. nov, while further north in colder and lower-salinity areas of the Baltic F. radicans occurs alone (north west Gulf of Bothnia). F. radicans appears to have arisen via rapid speciation from F. vesiculosus within the recent history of the Baltic (ca. 7500 BP). Possible functional divergence between the two species was investigated by comparing stress-responsive gene expression in a common-garden experiment. The experiment used two allopatric populations of Fucus vesiculosus from the Skagerrak (North Sea) and Central Baltic, as well as F. radicans from the same Central Baltic site. The two species in sympatry displayed divergent heat shock responses, while F. vesiculosus populations from allopatric sites did not. F. radicans was more sensitive to heat shock at 25°C, either alone or together with high irradiance and desiccation, than Baltic or Skagerrak F. vesiculosus. The results indicate that rapid functional divergence in the inducible heat shock response has occurred between sympatric species on a timescale of thousands of years.


Late Embryogenesis Abundant Heat Shock Response Desiccation Stressor Clonal Reproduction Allopatric Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by funding from FCT-FEDER (ADAPT—POCI-PPCDT/MAR/61105/2004), Portugal and the EU Network of Excellence Marine Genomics Europe (G.A.P.), and a PhD fellowship from FCT and ESF (A.L.). The authors are grateful to two anonymous reviewers for comments and suggestions that improved the manuscript.


  1. Beer S, Kautsky L (1992) The recovery of net photosynthesis during rehydration of Botanica Marina three Fucus species from the Swedish west coast following exposure to air. 35:487–491Google Scholar
  2. Bergström L, Tatarenkov A, Johannesson K, Jönsson RB, Kautsky L (2005) Genetic and morphological identification of Fucus radicans sp. nov. (Fucales, Phaeophyceae) in the brackish Baltic Sea. J Phycol 41:1025–1038. doi: 10.1111/j.1529-8817.2005.00125.x CrossRefGoogle Scholar
  3. Coyer JA, Hoarau G, Secq M-PO-L, Stam WT, Olsen JL (2006) A mtDNA-based phylogeny of the brown algal genus Fucus (Heterokontophyta; Phaeophyta). Mol Phylogen Evol 39:209–222. doi: 10.1016/j.ympev.2006.01.019 CrossRefGoogle Scholar
  4. Donner J (1995) The quaternary history of Scandinavia. Cambridge University Press, CambridgeGoogle Scholar
  5. Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282. doi: 10.1146/annurev.physiol.61.1.243 CrossRefPubMedGoogle Scholar
  6. Ferl RJ, Manak MS, Reyes MF (2002) The 14-3-3s. Genome Biology 3: reviews3010.3011—reviews3010.3017. doi: 10.1186/gb-2002-3-7-reviews3010
  7. Frydman J (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70:603–647. doi: 10.1146/annurev.biochem.70.1.603 CrossRefPubMedGoogle Scholar
  8. Gabrielsen TM, Brochmann C, Rueness J (2002) The Baltic Sea as a model system for studying postglacial colonization and ecological differentiation, exemplified by the red alga Ceramium tenuicorne. Mol Ecol 11:2083–2095. doi: 10.1046/j.1365-294X.2002.01601.x CrossRefPubMedGoogle Scholar
  9. Ignatius H, Axberg S, Niemistö L, Winterhalter B (1981) Quaternary geology of the Baltic Sea. In: Voipio A (ed) The Baltic Sea. Elsevier Scientific, Amsterdam, pp 54–104Google Scholar
  10. Johannesson K, André C (2006) Life on the margin: genetic isolation and diversity loss in a peripheral marine ecosystem, the Baltic Sea. Mol Ecol 15:2013–2029. doi: 10.1111/j.1365-294X.2006.02919.x CrossRefPubMedGoogle Scholar
  11. Laksanalamai P, Robb FT (2004) Small heat shock proteins from extremophiles: a review. Extremophiles 8:1–11. doi: 10.1007/s00792-003-0362-3 CrossRefPubMedGoogle Scholar
  12. Lee GJ, Vierling E (2000) A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol 122:189–197CrossRefPubMedGoogle Scholar
  13. Orr MR, Smith TB (1998) Ecology and speciation. Trends Ecol Evol 13:502–506. doi: 10.1016/S0169-5347(98)01511-0 CrossRefGoogle Scholar
  14. Pearson GA, Kautsky L, Serrão E (2000) Recent evolution in Baltic Fucus vesiculosus: reduced tolerance to emersion stresses compared to intertidal (North Sea) populations. Mar Ecol Prog Ser 202:67–79. doi: 10.3354/meps202067 CrossRefGoogle Scholar
  15. Pearson GA, Lago-Leston A, Valente M, Serrão E (2006) Simple and rapid RNA extraction from freeze-dried tissue of brown algae and seagrasses. Eur J Phycol 41:97–104. doi: 10.1080/09670260500505011 CrossRefGoogle Scholar
  16. Pearson GA, Hoarau G, Lago-Leston A, Coyer JA, Kube M, Reinhardt R, Henckel K, Serrão ETA, Corre E, Olsen JL (2009a) An expressed sequence tag analysis of the intertidal brown seaweeds Fucus serratus (L.) and F. vesiculosus (L.) (Heterokontophyta, Phaeophyceae) in response to abiotic stressors. Mar BiotechnolGoogle Scholar
  17. Pearson GA, Lago-Leston A, Mota C (2009b) Frayed at the edges: selective pressure and adaptive response to abiotic stressors are mismatched in low diversity edge populations. J Ecol 97:450–462. doi: 10.1111/j.1365-2745.2009.01481.x CrossRefGoogle Scholar
  18. Pereyra RT, Bergström L, Kautsky L, Johannesson K (2009) Rapid speciation in a newly opened postglacial marine environment, the Baltic Sea. BMC Evol Biol 9:70. doi: 10.1186/1471-2148-9-70 CrossRefPubMedGoogle Scholar
  19. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36CrossRefPubMedGoogle Scholar
  20. Riginos C, Cunningham CW (2005) Local adaptation and species segregation in two mussel (Mytilus edulis × Mytilus trossulus) hybrid zones. Mol Ecol 14:381–400. doi: 10.1111/j.1365-294X.2004.02379.x CrossRefPubMedGoogle Scholar
  21. Russell G (1985) Recent evolutionary changes in the algae of the Baltic Sea. Br Phycol J 20:87–104. doi: 10.1080/00071618500650111 CrossRefGoogle Scholar
  22. Serrão E, Kautsky L, Brawley SH (1996) Distributional success of the marine seaweed Fucus vesiculosus L. in the brackish Baltic sea correlates with osmotic capabilities of Baltic gametes. Oecologia 107:1–12CrossRefGoogle Scholar
  23. Serrão EA, Brawley SH, Hedman J, Kautsky L, Samuelsson G (1999) Reproductive success of Fucus vesiculosus (Phaeophyceae) in the Baltic Sea. J Phycol 35:254–269. doi: 10.1046/j.1529-8817.1999.3520254.x CrossRefGoogle Scholar
  24. Siegel H, Gerth M, Tschersich G (2006) Sea surface temperature development of the Baltic Sea in the period 1990–2004. Oceanologia 48:119–131Google Scholar
  25. Somero GN (2005) Linking biogeography to physiology: evolutionary and acclimatory adjustments of thermal limits. Front Zool 2:1. doi: 10.1186/1742-9994-2-1 CrossRefPubMedGoogle Scholar
  26. Tatarenkov A, Bergström L, Jönsson RB, Serrão EA, Kautsky L, Johannesson K (2005) Intriguing asexual life in marginal populations of the brown seaweed Fucus vesiculosus. Mol Ecol 14:647–651. doi: 10.1111/j.1365-294X.2005.02425.x CrossRefPubMedGoogle Scholar
  27. Thompson JN (1998) Rapid evolution as an ecological process. Trends Ecol Evol 13:329–332. doi: 10.1016/S0169-5347(98)01378-0 CrossRefGoogle Scholar
  28. van Oppen MJH, Olsen JL, Stam WT (1995) Genetic variation within and among North Atlantic and Baltic populations of the benthic alga Phycodrus rubens (Rhodophyta). Eur J Phycol 30:251–260. doi: 10.1080/09670269500651021 CrossRefGoogle Scholar
  29. Vayda ME, Yuan ML (1994) The heat shock response of an Antarctic alga is evident at 5°C. Plant Mol Biol 24:229–233. doi: 10.1007/BF00040590 CrossRefPubMedGoogle Scholar
  30. Waters ER, Lee GJ, Vierling E (1996) Evolution, structure and function of the small heat shock proteins in plants. J Exp Biol 47:325–338Google Scholar
  31. Zhou Y, Landweber LF (2007) BLASTO: a tool for searching orthologous groups. Nucleic Acids Res 35:W678–W682. doi: 10.1093/nar/gkm278 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Asunción Lago-Lestón
    • 1
  • Catarina Mota
    • 1
  • Lena Kautsky
    • 2
  • Gareth A. Pearson
    • 1
    Email author
  1. 1.Centro de Ciências do Mar, CIMAR-Laboratorio AssociadoUniversidade do AlgarveFaroPortugal
  2. 2.Department of BotanyStockholm UniversityStockholmSweden

Personalised recommendations