Marine Biology

, Volume 157, Issue 2, pp 237–247

Trophic diversity of idoteids (Crustacea, Isopoda) inhabiting the Posidonia oceanica litter

  • Nicolas Sturaro
  • Stéphane Caut
  • Sylvie Gobert
  • Jean-Marie Bouquegneau
  • Gilles Lepoint
Original Paper


The coexistence of three idoteid species in Posidonia oceanica litter raises the question of trophic diversity and their role in the litter degradation process. Hence, diet composition of Idotea balthica, Idotea hectica and Cleantis prismatica was studied using a combination of gut contents and stable isotopes analysis. Gut content observations indicate that P. oceanica dead leaves are an important part of the ingested food for the three species, although their tissues are constituted of only a small to medium fraction of P. oceanica carbon. Our results also underlined the potential role of these species in the degradation of P. oceanica litter by mechanically fragmenting the litter and by assimilating a small to medium fraction of carbon. Moreover, we showed that there were considerable inter- and intra-specific differences in diet composition. Diet differed between juveniles and adults for I. balthica. Crustaceans are an important food source for adults of I. balthica, while I. hectica indicated a major contribution of algal material. C. prismatica showed an intermediate diet. This trophic diversity is probably one of the factors allowing these species to coexist in the same biotope.


  1. Arsuffi TL, Suberkropp K (1989) Selective feeding by shredders on leaf-colonizing stream fungi: comparison of macroinvertebrate taxa. Oecologia 79:30–37CrossRefGoogle Scholar
  2. Blum LK, Mills AL, Zieman JC, Zieman RT (1988) Abundance of bacteria and fungi in seagrass and mangrove detritus. Mar Ecol Prog Ser 42:73–78CrossRefGoogle Scholar
  3. Branstrator DK, Cabana G, Mazumder A, Rasmussen JB (2000) Measuring life-history omnivory in the opossum shrimp, Mysis relicta, with stable nitrogen isotopes. Limnol Oceanogr 45(2):463–467CrossRefGoogle Scholar
  4. Buia MC, Gambi MC, Zupo V (2000) Structure and functioning of Mediterranean seagrass ecosystems: an overview. Biol Mar Mediterr 7:167–190Google Scholar
  5. Bunn SE, Loneragan NR, Kempster MA (1995) Effects of acid washing on stable isotope ratios of C and N in penaeid shrimp and seagrass: implications for food-web studies using multiple stable isotopes. Limnol Oceanogr 40(3):622–625Google Scholar
  6. Caut S, Angulo E, Courchamp F (2008) Caution on isotopic model use for analyses of consumer diet. Can J Zool 86:438–445. doi:10.1139/Z08-012 CrossRefGoogle Scholar
  7. Caut S, Angulo E, Courchamp F (2009) Variation in discrimination factors (Delta N-15 and Delta C-13): the effect of diet isotopic values and applications for diet reconstruction. J Appl Ecol 46(2):443–453. doi:10.1111/j.1365-2664.2009.01620.x CrossRefGoogle Scholar
  8. Cebrián J, Duarte CM, Marbà N, Enríquez S, Gallegos M, Olesen B (1996) Herbivory on Posidonia oceanica: magnitude and variability in the Spanish Mediterranean. Mar Ecol Prog Ser 130:147–155CrossRefGoogle Scholar
  9. Charfi-Cheikhrouha F (2000) Description of Idotea hectica (Pallas, 1772) from the Tunisian coast (Isopoda, Valvifera). Crustaceana 73:153–161CrossRefGoogle Scholar
  10. Cox AS (2004) Dynamique et composition faunistique de la litière et des banquettes de Posidonia oceanica en Baie de Calvi. Étude préliminaire. Master thesis, University of Liège, Belgium, pp 1–38Google Scholar
  11. Crawley KR, Hyndes GA, Vanderklift MA (2007) Variation among diets in discrimination of δ13C and δ15N in the amphipod Allorchestes compressa. J Exp Mar Biol Ecol 349:370–377CrossRefGoogle Scholar
  12. Dauby P (1989) The stable carbon isotope ratios in benthic food webs of the gulf of Calvi, Corsica. Cont Shelf Res 9:181–195CrossRefGoogle Scholar
  13. Dauby P (1995) A δ13C study of the feeding habits in four Mediterranean Leptomysis species (Crustacea: Mysidacea). PSZNI Mar Ecol 16:93–102CrossRefGoogle Scholar
  14. DeNiro MJ, Epstein S (1981) Isotopic composition of cellulose from aquatic organisms. Geochim Cosmochim Acta 45(10):1885–1894CrossRefGoogle Scholar
  15. Dimech M, Borg JA, Schembri PJ (2006) Motile macroinvertebrate assemblages associated with submerged Posidonia oceanica litter accumulations. Biol Mar Medit 13(4):130–133Google Scholar
  16. Dittel AL, Epifanio CE, Fogel ML (2006) Trophic relationships of juvenile blue crabs (Callinectes sapidus) in estuarine habitats. Hydrobiologia 568:379–390. doi:10.1007/s10750-006-0204-2 CrossRefGoogle Scholar
  17. Fenchel T (1970) Studies on the decomposition of organic detritus derived from the turtle grass Thalassia testudinum. Limnol Oceanogr 15(1):14–20Google Scholar
  18. Fenchel T (1977) The significance of bactivorous protozoa in the microbial community of detrital particles. In: Cairns J (ed) Aquatic microbial communities. Garland Pub Co, New York, pp 529–544Google Scholar
  19. Gallmetzer I, Pflugfelder B, Zekely J, Ott JA (2005) Macrofauna diversity in Posidonia oceanica detritus: distribution and diversity of mobile macrofauna in shallow sublittoral accumulations of Posidonia oceanica detritus. Mar Biol 147(2):517–523. doi:10.1007/s00227-005-1594-9 CrossRefGoogle Scholar
  20. Gannes LZ, OBrien DM, delRio CM (1997) Stable isotopes in animal ecology: assumptions, caveats, and a call for more laboratory experiments. Ecology 78(4):1271–1276Google Scholar
  21. Gorokhova E, Hansson S (1999) An experimental study on variations in stable carbon and nitrogen isotope fractionation during growth of Mysis mixta and Neomysis integer. Can J Fish Aquat Sci 56(11):2203–2210CrossRefGoogle Scholar
  22. Graça MAS, Maltby L, Calow P (1993) Importance of fungi in the diet of Gammarus pulex (L.) and Asellus aquaticus (L.). I feeding strategies. Oecologia 93:139–144Google Scholar
  23. Guarino SM, Gambardella C, Ianniruberto M, de Nicola M (1993) Colour polymorphism in Idotea balthica from the Bay of Naples and its ecological significance. J Mar Biol Assoc UK 64:21–33Google Scholar
  24. Havelange S, Lepoint G, Dauby P, Bouquegneau JM (1997) Feeding of the Sparid fish Sarpa salpa in a seagrass ecosystem: diet and carbon flux. PSZNI Mar Ecol 18:289–297CrossRefGoogle Scholar
  25. Holmer M, Duarte CM, Boschker HTS, Barrón C (2004) Carbon cycling and bacterial carbon sources in pristine and impacted Mediterranean seagrass sediments. Aquat Microb Ecol 36:227–237CrossRefGoogle Scholar
  26. Jackson AL, Inger R, Bearhop S, Parnell A (2009) Erroneous behaviour of MixSIR, a recently published Bayesian isotope mixing model: a discussion of Moore & Semmens (2008). Ecol Lett 12(3):E1–E5. doi:10.1111/j.1461-0248.2008.01233.x CrossRefPubMedGoogle Scholar
  27. Janssens M (2000) Etude in situ de la production primaire des macroalgues d’une baie méditerranéenne et influences dans le cycle du carbone. Ph.D. thesis, University of Liège, Belgium, pp 1–270Google Scholar
  28. Jennings S, Renones O, Morales Nin B, Polunin NVC, Moranta J, Coll J (1997) Spatial variation in the N-15 and C-13 stable isotope composition of plants, invertebrates and fishes on Mediterranean reefs: Implications for the study of trophic pathways. Mar Ecol Prog Ser 146:109–116CrossRefGoogle Scholar
  29. Jormalainen V, Honkanen T, Heikkila N (2001) Feeding preferences and performance of a marine isopod on seaweed hosts: cost of habitat specialization. Mar Ecol Prog Ser 220:219–230CrossRefGoogle Scholar
  30. Klap VA, Hemminga MA, Boon JJ (2000) Retention of lignin in seagrasses: angiosperms that returned to the sea. Mar Ecol Prog Ser 194:1–11CrossRefGoogle Scholar
  31. Lee WL (1966a) Color change and the ecology of the marine isopod Idothea (Pentidotea) montereyensis Maloney, 1933. Ecology 47:930–941CrossRefGoogle Scholar
  32. Lee WL (1966b) Pigmentation of the marine Isopod Idotea montereyensis. Comp Biochem Phys 18:17–36CrossRefGoogle Scholar
  33. Lepoint G, Nyssen F, Gobert S, Dauby P, Bouquegneau JM (2000) Relative impact of a seagrass bed and its adjacent epilithic algal community in consumer diets. Mar Biol 136(3):513–518CrossRefGoogle Scholar
  34. Lepoint G, Cox AS, Dauby P, Poulicek M, Gobert S (2006) Food sources of two detritivore amphipods associated with the seagrass Posidonia oceanica leaf litter. Mar Biol Res 2(5):355–365. doi:10.1080/17451000600962797 CrossRefGoogle Scholar
  35. Lesutiene J, Gorokhova E, Gasiunaite ZR, Razinkovas A (2007) Isotopic evidence for zooplankton as an important food source for the mysid Paramysis lacustris in the Curonian Lagoon, the south-eastern Baltic Sea. Estuar Coast Shelf Sci 73:73–80. doi:10.1016/j.ecss.2006.12.010 CrossRefGoogle Scholar
  36. Lorenti M, Fresi E (1983a) Vertical zonation of vagile fauna from the foliar stratum of a Posidonia oceanica bed. Isopoda. Rapp Comm int Mer Medit 28(3):143–145Google Scholar
  37. Lorenti M, Fresi E (1983b) Grazing of ldotea baltica on Posidonia oceanica: preliminary observations. Rapp Comm Int Mer Medit 28(3):147–148Google Scholar
  38. Mateo MA, Romero J (1997) Detritus dynamics in the seagrass Posidonia oceanica: elements for an ecosystem carbon and nutrient budget. Mar Ecol Prog Ser 151:43–53CrossRefGoogle Scholar
  39. Mateo MA, Cebrián J, Dunton K, Mutchler T (2006) Carbon flux in seagrass ecosystems. In: Larkum AWD, Orth JJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, New York, pp 159–192Google Scholar
  40. Mazzella L, Buia MC, Gambi MC, Lorenti M, Russo GF, Scipione MB, Zupo V (1992) Plant-animal trophic relationships in the Posidonia oceanica ecosystem of the Mediterranean Sea: a review. In: John DM, Hawkins SJ, Price JH (eds) Plant-animal interactions in the marine benthos. The systematics association, vol 46. Clarendon Press, Oxford, pp 165–187Google Scholar
  41. McGrath CC, Matthews RA (2000) Cellulase activity in the freshwater amphipod Gammarus lacustris. J N Am Benthol Soc 19:298–307CrossRefGoogle Scholar
  42. Melville AJ, Connolly RM (2003) Spatial analysis of stable isotope data to determine primary sources of nutrition for fish. Oecologia 136:499–507. doi:10.1007/s00442-003-1302-8 CrossRefPubMedGoogle Scholar
  43. Moore JW, Semmens BX (2008) Incorporating uncertainty and prior information into stable isotope mixing models. Biol Lett 11:470–480. doi:10.1111/j.1461-0248.2008.01163.x Google Scholar
  44. Naylor E (1955) The diet and feeding mechanism of Idotea. J Mar Biol Assoc UK 34:347–355CrossRefGoogle Scholar
  45. Nicotri ME (1980) Factors involved in herbivore food preference. J Exp Mar Biol Ecol 42:13–26CrossRefGoogle Scholar
  46. Pasqualini V (1997) Caractérisation des peuplements et types de fonds le long du littoral corse (Méditerranée, France). Ph.D. thesis, Univ Corse, France, pp 1–165Google Scholar
  47. Pergent G, Romero J, Pergent-Martini C, Mateo MA, Boudouresque CF (1994) Primary production stocks and fluxes in the Mediterranean seagrass Posidonia oceanica. Mar Ecol Prog Ser 106:139–146CrossRefGoogle Scholar
  48. Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Ann Rev Ecol Syst 18:293–320CrossRefGoogle Scholar
  49. Phillips NW (1984) Role of different microbes and substrates as potential suppliers of specific, essential nutrients to marine detritivores. Bull Mar Sci 35:283–298Google Scholar
  50. Pirc H, Wollenweber B (1988) Seasonal changes in nitrogen, free amino acids, and C/N ratios in Mediterranean seagrasses. Mar Ecol 9(2):167–179CrossRefGoogle Scholar
  51. Poore GCB, Lew Ton HM (1990) The Holognathidae (Crustacea: Isopoda: Valvifera) expanded and redefined on the basis of body-plan. Invertebr Taxon 4:55–80CrossRefGoogle Scholar
  52. Prado P, Tomas F, Alcoverro T, Romero J (2007) Extensive direct measurements of Posidonia oceanica defoliation confirm the importance of herbivory in temperate seagrass meadows. Mar Ecol Prog Ser 340:63–71CrossRefGoogle Scholar
  53. Quan WM, Fu CZ, Jin BS, Luo YQ, Li B, Chen JK, Wu JH (2007) Tidal marshes as energy sources for commercially important nektonic organisms: stable isotope analysis. Mar Ecol Prog Ser 352:89–99. doi:10.3354/meps07160 CrossRefGoogle Scholar
  54. Reñones O, Polunin VC, Goni R (2002) Size related dietary shifts of Epinephelus marginatus in a western Mediterranean littoral ecosystem: an isotope and stomach content analysis. J Fish Biol 61:122–137CrossRefGoogle Scholar
  55. Salemaa H (1978) Geographic variability in the colour polymorphism of Idotea balthica (Isopoda) in the northern Baltic. Hereditas 88:165–182CrossRefPubMedGoogle Scholar
  56. Salemaa H (1979) Ecology of Idotea spp. (Isopoda) in the northern Baltic. Ophelia 18:133–150Google Scholar
  57. Svensson PA, Malm T, Engkvist R (2004) Distribution and host plant preference of Idotea baltica (Pallas) (Crustacea: Isopoda) on shallow rocky shores in the central Baltica Sea. Sarsia 89:1–7CrossRefGoogle Scholar
  58. Tinturier-Hamelin E (1963) Polychromatisme et determination génétique du sexe chez l’espèce polytypique Idotea balthica (Pallas) (Isopode Valvifère). Cah Biol Mar 4:473–591Google Scholar
  59. Vanderklift MA, Ponsard S (2003) Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136:169–182. doi:10.1007/s00442-003-1270-z CrossRefPubMedGoogle Scholar
  60. Vela A (2006) Fonctionnement et production primaire des herbiers à Posidonia oceanica (L.) Delile en Méditerranée. Ph.D. thesis, University of Corsica, France, pp 1–126Google Scholar
  61. Velimirov B, Ott JA, Novak R (1981) Microorganisms on macrophyte debris: biodegradation and its implication in the food web. Kieler Meeresf Sonderh 5:333–344Google Scholar
  62. Vesakoski O, Merilaita S, Jormalainen V (2008) Reckless males, rational females: dynamic trade-off between food and shelter in the marine isopod Idotea balthica. Behav Process 79:175–181CrossRefGoogle Scholar
  63. Vizzini S, Sara G, Michener RH, Mazzola A (2002) The role and contribution of the seagrass Posidonia oceanica (L.) Delile organic matter for secondary consumers as revealed by carbon and nitrogen stable isotope analysis. Acta Oecol 23:277–285CrossRefGoogle Scholar
  64. Wallerstein BR, Brusca RC (1982) Fish predation: a preliminary study of its role in the zoogeography and evolution of shallow-water idoteid isopods (Crustacea: Isopoda: Idoteidae). J Biogeogr 9:135–150CrossRefGoogle Scholar
  65. Wittmann K, Scipione MB, Fresi E (1981) Some laboratory experiments on the activity of the macrofauna in the fragmentation of detrital leaves of Posidonia oceanica (L.) Delile. Rapp Comm int Mer Medit 27(2):205–206Google Scholar
  66. Yamamuro M (1999) Importance of epiphytic cyanobacteria as food sources for heterotrophs in a tropical seagrass bed. Coral Reefs 18(3):263–271CrossRefGoogle Scholar
  67. Zimmer M, Bartholmé S (2003) Bacterial endosymbionts in Asellus aquaticus (Isopoda) and Gammarus pulex (Amphipoda) and their contribution to digestion. Limnol Oceanogr 48:2208–2213CrossRefGoogle Scholar
  68. Zimmer M, Danko JP, Pennings SC, Danford AR, Carefoot TH, Ziegler A, Uglow RF (2002) Cellulose digestion and phenol oxidation in coastal isopods (Crustacea: Isopoda). Mar Biol 140:1207–1213. doi:10.1007/s00227-002-0800-2 CrossRefGoogle Scholar
  69. Zimmerman R, Gibson R, Harrington J (1979) Herbivory and detritivory among gammaridean amphipods from a Florida seagrass community. Mar Biol 54:41–47CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Nicolas Sturaro
    • 1
  • Stéphane Caut
    • 1
    • 2
  • Sylvie Gobert
    • 1
  • Jean-Marie Bouquegneau
    • 1
  • Gilles Lepoint
    • 1
  1. 1.MARE Centre, Laboratoire d’OcéanologieUniversité de LiègeLiègeBelgium
  2. 2.Estación Biológica de DoñanaConsejo Superior de Investigationes Científicas (CSIC)SevillaSpain

Personalised recommendations