Marine Biology

, Volume 156, Issue 12, pp 2421–2439 | Cite as

Wood-based diet and gut microflora of a galatheid crab associated with Pacific deep-sea wood falls

  • Caroline HoyouxEmail author
  • Magali Zbinden
  • Sarah Samadi
  • Françoise Gaill
  • Philippe Compère
Original Paper


Wood falls in the deep sea have recently become the focus of studies showing their importance as nutrients on the deep-sea floor. In such environments, Crustaceans constitute numerically the second-largest group after Mollusks. Many questions have arisen regarding their trophic role therein. A careful examination of the feeding appendages, gut contents, and gut lining of Munidopsisandamanica caught with wood falls revealed this species as a truly original detritivorous species using wood and the biofilm covering it as two main food sources. Comparing individuals from other geographic areas from substrates not reported highlights the galatheid crab as specialist of refractory substrates, especially vegetal remains. M.andamanica also exhibits a resident gut microflora consisting of bacteria and fungi possibly involved in the digestion of wood fragments. The results suggest that Crustaceans could be full-fledged actors in the food chains of sunken-wood ecosystems and that feeding habits of some squat lobsters could be different than scavenging.


Digestive Gland Solomon Island Lateral Tooth Gastric Mill Wood Fragment 



The authors thank the chief scientists of the BOA1 and SantoBOA cruises, S. Samadi and B. Richer de Forges, respectively, and also the captains and crews. SantoBOA was included in the Biodiversity expedition Santo MNHN/PNI/IRD (Co-PI: P. Bouchet, O. Pascal and H. Le Guyader) that was supported by grants from the Total Foundation. The authors also gratefully acknowledge the excellent technical assistance of N. Decloux with transmission and scanning electron microscopy. Thanks are also due to E. Macpherson for the taxonomic determination of the specimens. Thanks also go to the reviewers for providing constructive comments on the manuscript. This work is included in the GDRE-DIWOOD research program (“Diversity, Establishment, and Function of Organisms Associated with Marine Wood Falls”) directed by F. Gaill and was supported by the Belgian Fund for Joint Basic Research (F.R.F.C Belgium, convention no. 2.4594.07.F). Caroline Hoyoux is a PhD student fellow of the F.R.S–F.N.R.S (National Fund for Scientific Research, Belgium).


  1. Alencar YB, Ríos-Velásquez CM, Lichtwardt RW, Hamada N (2003) Trichomycetes (Zygomycota) in the Digestive Tract of Arthropods in Amazonas, Brazil. Mem Inst Oswaldo Cruz 98(6):799–810PubMedGoogle Scholar
  2. Baba K (1988) Chirostylid and Galatheid crustaceans (Decapoda: Anomura) of the “Albatross” Philippine expedition, 1907–1910. Researches on Crustacea, Special Number 2: v + 203 pGoogle Scholar
  3. Baba K (2005) Deep-sea Chirostylid and Galatheid crustaceans (Decapoda: Anomura) from the Indo-Pacific, with a list of the species. Galathea report 20, 317 pGoogle Scholar
  4. Baba K, Macpherson E, Poore GC, Ahyong ST, Bermudez A, Cabezas P, Lin C-W, Nizinski M, Rodrigues C, Schnabel K (2008) Catalogue of squat lobsters of the world (Crustacea: Decapoda: Anomura—families Chirostylidae, Galatheidae and Kiwaidae). Zootaxa 1905:1–220Google Scholar
  5. Bayon C (1980) Volatile fatty acids and methane production in relation to anaerobic carbohydrate fermentation in Oryctes nasicornis larvae (Coleoptera: Scarabaeidae). J Insect Physiol. doi: Google Scholar
  6. Bennett BA, Smith CR, Glaser B, Maybaum HL (1994) Faunal community structure of a chemoautotrophic assemblage on whale bones in the deep northeast Pacific Ocean. Mar Ecol Prog Ser 108:205–223Google Scholar
  7. Bignell D (1984) The arthropod gut as an environment for microorganisms. In: Anderson J, Rayner A, Walton D (eds) Invertebrate-microbial interactions. Cambridge University Press, Cambridge, pp 205–227Google Scholar
  8. Block RJ, Bolling D (1938) The amino acid composition of keratins-the composition of gorgonin, spongin, turtle scutes, and other keratins. J Biol Chem 127:685–693Google Scholar
  9. Brecko D, Strus J (1992) The morphology of the hindgut in semi-terrestrial and terrestrial isopods. In: Proceedings of the 1st European Crustacean conference, Paris, pp 17–18Google Scholar
  10. Bricage P (1998) La Survie des Systèmes Vivants. In: Atelier MCX20 Prendre soin de l’homme. Programme Européen Modélisation de la Complexité. MCX, Pau, 19 Oct 1998, 3 pGoogle Scholar
  11. Bricage P (2000) Systèmes biologiques: Le jeu de la croissance et de la survie. Quelles règles? Quelles décisions? Quels bilans? In: La décision systémique : du biologique au social, AFSCET, Paris, 6 pGoogle Scholar
  12. Caine EA (1974) Feeding of Ovalipes guadulpensis (Saussure) (Decapoda : Brachyura : Portunidae), and morphological adaptations to a burrowing existence. Biol Bull 147:550–559PubMedGoogle Scholar
  13. Cayré P, Richer de Forges B (2002) Faune mystérieuse des océans profonds. La Recherche 355:59–62Google Scholar
  14. Ceccaldi HJ (2006) The digestive tract: anatomy, physiology and biochemistry. In: Forest J, von Vaupel Klein JC (eds) Treatise on zoology—anatomy, taxonomy, biology—the crustacea, vol 2. Brill, Leiden Boston, pp 85–203Google Scholar
  15. Chevaldonné P, Olu K (1996) Occurrence of anomuran crabs (Crustacea: Decapoda) in hydrothermal vent and cold-seep communities: a review. Proc Biol Soc Wash 109(2):286–298Google Scholar
  16. Coelho VR, Rodrigues SA (2001) Trophic behaviour and functional morphology of the feeding appendages of the laomediid shrimp Axianassa australis (Crustacea: Decapoda: Thalassinidea). J Mar Biol Ass UK 81:441–454Google Scholar
  17. Coen LD (1987) Plant-Animal interactions: ecology and functional comparative morphology of plant-grazing decapod (brachyuran) crustaceans. PhD dissertation, University of MarylandGoogle Scholar
  18. Costerton JW, Ingram JM, Cheng K-J (1974) Structure and function of the cell envelope of gram-negative bacteria. Bact Rev 38(1):87–110PubMedGoogle Scholar
  19. Crain JA (1999) Functional morphology of prey ingestion by Placetron wosnessenskii Schalfeew Zoeae (Crustacea: Anomura: Lithodidae). Biol Bull 197:207–218PubMedGoogle Scholar
  20. Cundell AM, Brown MS, Stanford R, Mitchell R (1979) Microbial degradation of Rhizophora mangle leaves immersed in the sea. East Coast Mar Sci 9:281–286Google Scholar
  21. Dall W (1967) The functional anatomy of the digestive tract of a shrimp, Metapeneaus bennettae Racek and Dall (Crustacea: Decapoda: Penaedae). Aust J Zool 15:699–714Google Scholar
  22. Dempsey AC, Kitting CL (1987) Characteristics of bacteria isolated from penaeid shrimp. Crustaceana 52(1):90–94Google Scholar
  23. Distel DL, Roberts SJ (1997) Bacterial endosymbionts in the gills of the deep-sea wood-boring bivalves Xylophaga atlantica and Xylophaga washingtona. Biol Bull 192:253–261PubMedGoogle Scholar
  24. Distel DL, Baco AR, Chuang E, Morrill W, Cavanaugh C, Smith CR (2000) Do mussels take wooden steps to deep-sea vents? Nature. doi: PubMedGoogle Scholar
  25. Dolan MF (2001) Speciation of termite gut protists: the role of bacterial symbionts. Int Microbiol 4:203–208PubMedGoogle Scholar
  26. Douglas AE (1994) Symbiotic interactions. Oxford University Press, Oxford. doi: CrossRefGoogle Scholar
  27. Duperron S, Laurent MCZ, Gaill F, Gros O (2008) Sulphur-oxidizing extracellular bacteria in the gills of Mytilidae associated with wood falls. FEMS Microbiol Ecol. doi: PubMedGoogle Scholar
  28. Dupont J, Rousseau F, Zbinden M, Frébourg G, Samadi S, Gaill F (2005) Systematics investigations on a deep sea Ascomycete recovered from wood samples. In: 3rd international symposium on hydrothermal vent and seep biologyGoogle Scholar
  29. Erasmus JH, Cook PA, Coyne VE (1997) The role of bacteria in the digestion of seaweed by the abalone Haliotis midae. Aquaculture. doi: Google Scholar
  30. Escobar-Briones E, Morales P, Cienfuegos E, Gonzáles M (2002) Carbon sources and trophic position of two abyssal species of Anomura, Munidopsis alvisca (Galatheidae) and Neolithodes diomedeae (Lithodidae). In: Hendrickx ME (ed) Contributions to the study of East Pacific crustaceans. Instituto de Ciencias del Mar y Limnología, UNAM, pp 37–43Google Scholar
  31. Factor JR (1978) Morphology of the mouthparts of larval lobsters, Homarus americanus (Decapoda: Nephropidae), with special emphasis on their setae. Biol Bull. doi: PubMedGoogle Scholar
  32. Felgenhauer B (1992) Internal anatomy of the Decapoda: an overview. In: Harrison F, Humes A (eds) Microscopic anatomy of invertebrates. Decapod Crustacea, vol 10. Wiley-Liss, New York, pp 44–75Google Scholar
  33. Felgenhauer BE, Abele LG (1985) Feeding structures of two atypid shrimps, with comments on caridean phylogeny. J Crust Biol 5:397–419Google Scholar
  34. Foglesong MA, Walker DH Jr, Puffer JS, Markovetz AJ (1975) Ultrastructural morphology of some prokaryotic microorganisms associated with the hindgut of cockroaches. J Bacteriol 123(1):336–345PubMedPubMedCentralGoogle Scholar
  35. Garm A (2004) Revising the definition of the crustacean seta and setal classification systems based on examinations of the mouthpart setae of seven species of decapods. Zool J Linn Soc. doi: Google Scholar
  36. Garm A, Høeg JT (2001) Function and functional groupings of the complex mouth apparatus of the squat lobsters Munida sarsi Huus and M. tenuimana G.O. Sars (Crustacea: Decapoda). Biol Bull 200:281–297PubMedGoogle Scholar
  37. Giddins RL, Lucas JS, Neilson MJ, Richards GN (1986) Feeding ecology of the mangrove crab Neosarmatium smithi (Crustacea: Decapoda: Sesarmidae). Mar Ecol Prog Ser 33:147–155Google Scholar
  38. Goffredi SK, Paull CK, Fulton-Bennett K, Hurtado LA, Vrijenhoek RC (2004) Unusual benthic fauna associated with a whale fall in Monterey Canyon, California. Deep Sea Res I. doi: Google Scholar
  39. Gore RH (1983) Notes on rare species of Munidopsis (Anomura: Galatheidae) and Ethusina (Brachyura: Dorippidae) collected by the USNS Bartlett in the Venezuela basin, Caribbean Sea. Proc Acad Nat Sci Phila 135:200–217Google Scholar
  40. Gros O, Gaill F (2007) Extracellular bacterial association in gills of “wood mussels”. Cah Biol Mar 48(1):103–109Google Scholar
  41. Growns IO, Richardson AMM (1988) Diet and burrowing habits of the freshwater crayfish, Parastacoides tasmanicus tasmanicus Clark (Decapoda : Parastacidae). Mar Freshw Res 39(4):525–534Google Scholar
  42. Guan R-Z, Wiles PR (1998) Feeding ecology of the signal crayfish Pacifastacus leniusculus in a British lowland river. Aquaculture. doi: Google Scholar
  43. Hammel KE (1997) Fungal degradation of lignin. In: Cadisch G, Giller KE (eds) Driven by nature: plant litter quality and decomposition. CAB International, Caen, pp 33–45Google Scholar
  44. Harris JM (1993) The presence, nature, and role of gut microflora in aquatic invertebrates: a synthesis. Microb Ecol. doi:
  45. Hashimoto JK, Ohta S, Fujikura K, Miura T (1995) Microdistribution pattern and biogeography of the hydrothermal vent communities of the Minami-Ensei Knoll in the Mid-Okinawa Trough, Western Pacific. Deep Sea Res. doi: Google Scholar
  46. Hudson IR, Wigham BD (2003) In situ observations of predatory feeding behaviour of the galatheid squat lobster Munida sarsi (Huus, 1935) using a remotely operated vehicle. J Mar Biol Ass UK 83(3):463–464Google Scholar
  47. Icely JD, Nott JA (1984) On the morphology and fine structure of the alimentary canal of Corophium volutator (Pallas) (Crustacea: Amphipoda). Philos Trans R Soc Lond B. doi: Google Scholar
  48. Janßen F, Treude T, Witte U (2000) Scavenger assemblages under differing trophic conditions: a case study in the deep Arabian Sea. Deep Sea Res II 47:2999–3026Google Scholar
  49. Kemp KM, Jamieson AJ, Bagley PM, McGrath H, Bailey DM, Collins MA, Priede IG (2006) Consumption of large bathyal food fall, a siw month study in the NE Atlantic. Mar Ecol Prog Ser. doi: Google Scholar
  50. Kiel S, Goedert JL (2006a) A wood-fall association from Late Eocene deep-water sediments of Washington State, USA. Palaios. doi: Google Scholar
  51. Kiel S, Goedert JL (2006b) Deep-sea food bonanzas: Early Cenozoic whale-fall communities resemble wood-fall rather than seep communities. Proc R Soc B. doi: PubMedGoogle Scholar
  52. Kiel S, Amano K, Hikida Y, Jenkins RG (2008) Wood-fall associations from Late Cretaceous deep-water sediments of Hokkaido, Japan. Lethaia. doi: Google Scholar
  53. Kimura H, Harada K, Hara K, Tamaki A (2002) Enzymatic approach to fungal association with arthopod guts: a case study for the crustacean host Nihonotrypaea harmandi, and its foregut fungus, Enteromyces callianassae. Mar Ecol. doi: Google Scholar
  54. Kunze J, Anderson T (1979) Functional morphology of the mouthparts and gastric mill in the hermit crabs Clibanarius taeniatus (Milne Edwards), Clibanarius virescens (Krauss), Paguristes squamosus McCulloch and Dardanus setifer (Milne Edwards) (Anomura: Paguridae). Aust J Mar Freshw Res. doi: Google Scholar
  55. Lau WWY, Jumars PA, Armbrust EV (2002) Genetic diversity of attached bacteria in the hindgut of the deposit-feeding shrimp Neotrypaea (formerly Callianassa) californiensis (Decapoda: Thalassinidae). Microb Ecol 43:455–466PubMedGoogle Scholar
  56. Lichtwardt RW (1996) Trichomycetes and the arthropod gut. In: Howard D, Miller D (eds) The Mycota, animal and human relations. Springer, New York, pp 315–330Google Scholar
  57. Lindquist N, Barber PH, Weisz JB (2005) Episymbiotic microbes as food and defence for marine isopods: unique symbioses in a hostile environment. Proc Biol Sci. doi: PubMedGoogle Scholar
  58. López Lastra C (1990) Primera cita de Smittium morbosum var. rioplatensis var. nov. (Trichomycetes: Harpellales) patógeno de cinco especies de mosquitos (Diptera: Culicidae) en la República de Argentina. Re Arg Mic 13:14–18Google Scholar
  59. Lorion J, Duperron S, Gros O, Cruaud C, Samadi S (2009) Several deep-sea mussels and their associated symbionts are able to live both on wood and on whale falls. Proc Biol Sci. doi: PubMedGoogle Scholar
  60. Macavoy SE, Carney RS, Morgan E, Macko SA (2008a) Stable isotope variation among the mussels Bathymodiolus childressi and associated heterotrophic fauna at four cold-seeps communities in the Gulf of Mexico. J Shellfish Res. doi:[147:SIVATM]2.0.CO;2 Google Scholar
  61. Macavoy SE, Morgan E, Carney RS, Macko SA (2008b) Chemoautotrophic production incorporated by heterotrophs in Gulf of Mexico hydrocarbon seeps: an examination of mobile benthic predators and seep residents. J Shellfish Res. doi:[153:CPIBHI]2.0.CO;2 Google Scholar
  62. Macpherson E (2007) Species of the genus Munidopsis Whiteaves, 1784 from the Indian and Pacific Oceans and reestablishment of the genus Galacantha. A Milne-Edwards, 1880 (Crustacea, Decapoda, Galatheidae). Zootaxa 1417:1–135Google Scholar
  63. Macpherson E, Segonzac M (2005) Species of the genus Munidopsis (Crustacea, Decapoda, Galatheidae) from the deep Atlantic Ocean, including cold-seep and hydrothermal vent areas. Zootaxa 1095:1–60Google Scholar
  64. Malley DF (1978) Degradation of mangrove leaf litter by the tropical sesarmid crab Chiromanthes onychophorum. Mar Biol. doi: Google Scholar
  65. Margulis L, Olendzenski L, Afzelius B (1990) Endospore-forming filamentous bacteria symbiotic in termites: ultrastructure and growth in culture of Arthromitus. Symbiosis 8(2):95–116PubMedGoogle Scholar
  66. Marshall BA (1985) Recent and tertiary deep-sea limpets of the genus Pectinodonta Dall (Mollusca: Gastropoda) from New Zealand and New South Wales. New Zeal J Zool 12:273–282Google Scholar
  67. Marshall BA (1988) Skeneidae, Vitrinellidae and Orbitestellidae (Mollusca: Gastropoda) associated with biogenic substrata from bathyal depths off New Zealand and New South Wales. J Nat Hist 22:949–1004Google Scholar
  68. Martin MM (1992) The evolution of insect-fungus associations: from contact to stable symbiosis. Am Zool. doi: Google Scholar
  69. Martin JW, Jourharzadeh P, Fitterer PH (1998) Description and comparison of major foregut ossicles in hydrothermal vent crabs. Mar Biol 131:259–267Google Scholar
  70. Mattson WJ (1980) Herbivory in relation to plant nitrogen content. Ann Rev Ecol Syst. doi: Google Scholar
  71. Micheli F, Peterson CH, Mullineaux LS, Fisher CR, Mills SW, Sancho G, Johnson GA, Lenihan HS (2002) Predation structure communities at deep-sea hydrothermal vents. Ecol Monogr 72(3):365–382Google Scholar
  72. Ngoc-Ho N (1984) The functional anatomy of the foregut of Porcellana platycheles and a compatison with Galathea squamifera and Upogebia deltaura (Crustacea: Decapoda). J Zool Lond 203:511–535Google Scholar
  73. Nickell LA, Atkinson RJ (1995) Functional morphology of burrows and trophic modes of three thalassinidean shrimp species, and a new approach to the classification of thalassinidean burrow morphology. Mar Ecol Prog Ser. doi:
  74. Nickell LA, Atkinson RJA, Pinn EH (1998) Morphology of thalassinidean (Crustacea: Decapoda) mouthparts and pereiopods in relation to feeding, ecology and grooming. J Nat Hist. doi: Google Scholar
  75. Oxley AP, ShiptonW, Owens L, McKay D (2002) Bacterial flora from the gut of the wild and cultured banana prawn, Penaeus merguiensis. J Appl Microbiol. doi: PubMedGoogle Scholar
  76. Pailleret M, Haga T, Petit P, Gill CP, Saedlou N, Gaill F, Zbinden M (2006) Sunken wood from the Vanuatu Islands: identification of wood substrates and preliminary description of associated fauna. Mar Ecol. doi: Google Scholar
  77. Palacios C, Zbinden M, Baco AR, Treude T, Smith C, Gaill F, Lebaron P, Boetius A (2006) Microbial ecology of deep-sea sunken woods: quantitative measurements of bacterial biomass and cellulolytic activities. Cah Biol Mar 47:415–420Google Scholar
  78. Phillips NW (1984) Role of different microbes and substrates as potential suppliers of specific, essential nutrients to marine detritivores. Bull Mar Sci 35:283–298Google Scholar
  79. Phleger CF, Nelson MM, Groce AK, Cary SC, Coyne KJ, Nichols PD (2005) Lipid composition of deep-sea hydrothermal vent tubeworm Riftia pachyptila, crabs Munidopsis subsquamosa and Bythograea thermydron, mussels Bathymodiolus sp. and limpets Lepetodrilus spp. Comp Biochem Physiol B Biochem Mol Biol 141:196–210PubMedGoogle Scholar
  80. Pillai SR (1960) Studies on the shrimp Caridina laevis Heller. 1. Digestive system. J Mar Biol Assoc India 2:57–75Google Scholar
  81. Pinn EH, Nickell LA, Rogerson A, Atkinson RJA (1999) Comparison of gut morphology and gut microflora of seven species of mud shrimp (Crustacea: Decapoda: Thalassinidea). Mar Biol. doi: Google Scholar
  82. Plante C, Jumars PA, Baross JA (1990) Digestive associations between marine detritivores and bacteria. A Rev Ecol Syst 21:93–127Google Scholar
  83. Potrikus CJ, Breznak JA (1977) Nitrogen-fixing Enterobacter agglomerans isolated from guts of wood-eating termites. Appl Environ Microbiol 33(2):392–399PubMedPubMedCentralGoogle Scholar
  84. Powell RR (1974) The functional morphology of the fore-guts of the thallassinid crustaceans, Callianassa californiensis and Upogebia pugettensis. University of California Press, BerkeleyGoogle Scholar
  85. Reynolds JD, O’Keeffe C (2005) Dietary patterns in stream- and lake-dwelling populations of Austropotamobius pallipes. Bull Fr Peche Piscicult 376–377:715–730Google Scholar
  86. Salindeho IR, Johnston DJ (2003) Functional morphology of the mouthparts and proventriculus of the rock crab Nectocarcinus tuberculosus (Decapoda: Portunidae). J Mar Biol Assoc UK 83:821–834Google Scholar
  87. Samadi S, Dupont J, Rousseau F, Haga T, Amos G, Richer de Forges B (2005) Campagne BOA1 du N.O. «Alis» au Vanuatu du 2 au 18 septembre 2005, 10 pGoogle Scholar
  88. Samadi S, Quéméré E, Lorion J, Tillier A, Cosel R, Lopez P, Cruaud C, Couloux A, Boisselier M-C (2007) Phylogenetic position of sunken woods mytilids. C R Biol 330(5):446–456PubMedGoogle Scholar
  89. Schembri PJ (1982) Functional morphology of the mouthparts and associated structures of Pagurus rubricatus (Crustacea: Decapoda: Anomura) with special reference to feeding and grooming. Zoomorphology 101:17–38Google Scholar
  90. Schwarz JR, Yayanos AA, Colwell RR (1976) Metabolic activity of the intestinal microflora of a deep-sea invertebrate. Appl Environ Microbiol 31:46–48PubMedPubMedCentralGoogle Scholar
  91. Skilleter GA, Anderson DT (1986) Functional morphology of the chelipeds, mouthparts and gastric mill of Ozius truncates (Milne Edwards) (Xanthidae) and Leptograpsus variegatus (Fabricius) (Grapsidae) (Brachyura). Aust J Mar Freshw Res 37:67–79Google Scholar
  92. Skov MW, Hartnoll RG (2002) Paradoxical selective feeding on a low-nutrient diet: why do mangrove crabs eat leaves? Oecologia 131:1–7PubMedGoogle Scholar
  93. Smith DC, Douglas AE (1987) The biology of symbiosis. Edward Arnold Ltd, LondonGoogle Scholar
  94. Smith CR, Kukert H, Wheatcroft RA, Jumars PA, Deming JW (1989) Vent fauna on whale remains. Nature 341:27–28Google Scholar
  95. Smith CR, Baco AR, Hannides A, Ruplinger D (2003) Chemosynthetic habitats on the California slope: whale-, wood- and kelp-falls compared to vents and seeps. Biogeography and Biodiversity of Chemosynthetic Ecosystems: Planning for the Future Southampton Oceanography Centre, Southampton, UKGoogle Scholar
  96. Stamhuis EJ, Dauwe B, Videler JJ (1998) How to bite the dust: morphology, motion pattern and function of the feeding appendages of the deposit-feeding thalassinid shrimp Callianassa subterranea. Mar Biol 132:43–58Google Scholar
  97. Turner RD (1977) Wood, mollusks and deep-sea food chains. Bull Am Malacol Union 213:13–19Google Scholar
  98. Van Dover CL, Lichtwardt RW (1986) A new trichomycete commensal with a galatheid squat lobster from deep-sea hydrothermal vents. Biol Bull 171(2):461–468Google Scholar
  99. Wafar S, Untwale AG, Wafar M (1997) Litter fall and energy flux in a mangrove ecosystem. East Coast Shelf Sci. doi: Google Scholar
  100. Warner GF (1977) The biology of crabs. Elek Science, London, UKGoogle Scholar
  101. Webster JR, Benfield EF (1986) Vascular plant breakdown in freshwater ecosystems. Annu Rev Ecol Syst 17:567–594Google Scholar
  102. Werner D, Barea JM, Brewin NJ, Cooper JE, Katinakis P, Lindstrom K, O’Gara F, Spaink HP, Truchet G, Muller P (2002) Symbiosis and defence in the interaction of plants with microorganisms. Symbiosis 32:83–104Google Scholar
  103. Williams AB (1988) New marine decapod crustaceans from waters influenced by hydrothermal discharge, brine, and hydrocarbone seepage. Fish Bull 86(2):263–287Google Scholar
  104. Williams AB, Smith CR, Baco AR (2000) New species of Paralomis (Decapoda, Anomura, Lithodidae) from a sunken whale carcass in the San Clemente basin off southern California. J Crust Biol 20(special number 2):281–285Google Scholar
  105. Wolcott DL, O’Connor NJ (1992) Herbivory in crabs: adaptations and ecological considerations. Am Zool. doi: Google Scholar
  106. Wolcott DL, Wolcott TG (1984) Food quality and cannibalism in the red crab Gecarcinus lateralis. Physiol Zool 57:318–324Google Scholar
  107. Wolfe SH, Felgenhauer BE (1991) Mouthpart and foregut ontogeny in larval, postlarval, and juvenile spiny lobster, Panulirus argus Latreille (Decapoda, Palinuridae). Zool Scripta. doi: Google Scholar
  108. Wolff T (1979) Macrofaunal utilization of plant remains in the deep sea. Sarsia 64:117–136Google Scholar
  109. Wu MF, Chan TY, Yu HP (1998) On the Chirostylidae and Galatheidae (Crustacea: Decapoda: Galatheidea) of Taiwan. Annu Taiwan Mus 40:75–153Google Scholar
  110. Zbinden M, Cambon-Bonavita M (2003) Occurrence of Deferribacterales and Entomoplasmatales in the deep-sea Alvinocarid shrimp Rimicaris exoculata gut. FEMS Microbiol Ecol. doi: PubMedGoogle Scholar
  111. Zimmer M, Bartholmé S (2003) Bacterial endosymbionts in Asellus aquaticus (Isopoda) and Gammarus pulex (Amphipoda) and their contribution to digestion. Limnol Oceanogr 48(6):2208–2213Google Scholar
  112. Zimmer M, Topp W (1998) Microorganisms and cellulose digestion in the gut of the woodlouse Porcellio scaber. J Chem Ecol 24(8):1397–1408Google Scholar
  113. Zook D (1998) A new symbiosis language. ISS Symbiosis News 1(3):1–3Google Scholar
  114. Zurek L, Keddie BA (1998) Significance of methanogenic symbionts for development of the American cockroach, Periplaneta americana. J Insect Physiol. doi: PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Caroline Hoyoux
    • 1
    Email author
  • Magali Zbinden
    • 2
  • Sarah Samadi
    • 3
  • Françoise Gaill
    • 2
  • Philippe Compère
    • 1
  1. 1.Laboratoire de Morphologie fonctionnelle et évolutive, Unité de Morphologie UltrastructuraleUniversité de LiègeLiègeBelgium
  2. 2.UMR 7138 CNRS, Université Pierre et Marie CurieParis Cedex 05France
  3. 3.UMR 7138 UPMC-IRD-MNHN-CNRS, CP 26, 57 Rue Cuvier, Muséum National d’Histoire NaturelleParis cedex 05France

Personalised recommendations