Marine Biology

, Volume 156, Issue 11, pp 2403–2411 | Cite as

Development of clade-specific Symbiodinium primers for quantitative PCR (qPCR) and their application to detecting clade D symbionts in Caribbean corals

  • Adrienne M. S. Correa
  • M. Danielle McDonald
  • Andrew C. Baker
Method

Abstract

We developed quantitative PCR (qPCR) assays to distinguish each of the four clades (AD) of dinoflagellate endosymbionts (genus Symbiodinium) commonly found in Caribbean corals. We applied these primer sets, which target portions of the multi-copy ribosomal DNA (rDNA) gene family, to assess the presence/absence of symbionts in clade D (as indicated by the detection of clade D DNA). We detected these symbionts in five of six Caribbean host species/genera (21% of samples analyzed, N = 10 of 47 colonies), from which clade D had rarely or never been observed. This suggests that Symbiodinium in clade D are present in a higher diversity of coral species than previously thought. This qPCR-based approach can improve our understanding of the total microbial diversity associated with corals, particularly in hosts thought to be relatively specific, and has many other potential applications for studies of coral reef ecology and conservation.

Notes

Acknowledgments

This work was conducted in the Bahamas under CITES permit #252, in the Florida Keys (USA) under National Marine Sanctuary permits FKNMS-2001-030 and FKNMS-2002-073, and Florida Fish and Wildlife Conservation Commission permit 01S-620 (all to A.C.B.), and in Panama under permit DNAPVS #3-95 (to the Smithsonian Tropical Research Institution). Collections in Bermuda were made under permits 020203 and 020701 (to C.J. Starger) and in the Dominican Republic under a permit from the Subsecretaria de Areas Protegidas y Biodiversidad (to R. Torres). We are grateful to S. R. Santos, M. A. Coffroth, R. A. Kinzie, and M. Hidaka for providing us with cultured Symbiodinium material. We thank M. A. Coffroth, P. W. Glynn, D. M. Poland, and three anonymous reviewers, whose comments improved previous versions of this manuscript. A.M.S.C. is supported by a Columbia University Graduate Fellowship, M.D.M. is supported by the National Science Foundation (IOS-0455904) and A.C.B. is supported by the National Science Foundation (OCE-0099301 and 0527184), the Pew Charitable Trusts, and the Wildlife Conservation Society.

References

  1. Abrego D, Ulstrup KE, Willis BL, van Oppen MJH (2008) Species-specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress. Proc R Soc Lond Ser B Biol Sci 275:2273–2282CrossRefGoogle Scholar
  2. Apprill AM, Gates RD (2007) Recognizing diversity in coral symbiotic dinoflagellate communities. Mol Ecol 16:1127–1134PubMedCrossRefGoogle Scholar
  3. Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol Evol Syst 34:661–689CrossRefGoogle Scholar
  4. Baker AC, Romanski AM (2007) Multiple symbiotic partnerships are common in scleractinian corals, but not in octocorals: comment on Goulet (2006). Mar Ecol Prog Ser 335:237–242CrossRefGoogle Scholar
  5. Baker AC, Rowan R, Knowlton N (1997) Symbiosis ecology of two Caribbean acroporid corals. In: Lessios HA, MacIntyre IG (eds) Proc 8th Int Coral Reef Symp, vol 2. Smithsonian Tropical Research Institute, Balboa, pp 1295–1300Google Scholar
  6. Baker AC, Starger CJ, McClanahan TR, Glynn PW (2004) Corals’ adaptive response to climate change. Nature 430:741PubMedCrossRefGoogle Scholar
  7. Berkelmans R, van Oppen MJH (2006) The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc R Soc Lond Ser B Biol Sci 273:2305–2312CrossRefGoogle Scholar
  8. Cantin NE, Van Oppen MJH, Willis BL, Mieog JC, Negri AP (2009) Juvenile corals can acquire more carbon from high-performance algal symbionts. Coral Reefs 28:405–414CrossRefGoogle Scholar
  9. Chen CA, Lam KK, Nakano Y, Tsai WS (2003) A stable association of the stress-tolerant zooxanthellae, Symbiodinium clade D, with the low-temperature-tolerant coral, Oulastrea crispata (Scleractinia: Faviidae) in subtropical non-reefal coral communities. Zool Stud 42:540–550Google Scholar
  10. Coffroth MA, Santos SR (2005) Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. Protist 156:19–34PubMedCrossRefGoogle Scholar
  11. Drew EA (1972) The biology and physiology of algal-invertebrate symbiosis II. The density of algal cells in a number of hermatypic corals and alcyonarians from various depths. J Exp Mar Biol Ecol 9:71–75CrossRefGoogle Scholar
  12. Fabricius KE, Mieog JC, Colin PL, Idip D, Van Oppen MJH (2004) Identity and diversity of coral endosymbionts (zooxanthellae) from three Palauan reefs with contrasting bleaching, temperature and shading histories. Mol Ecol 13:2445–2458PubMedCrossRefGoogle Scholar
  13. Goulet TL (2006) Most corals may not change their symbionts. Mar Ecol Prog Ser 321:1–7CrossRefGoogle Scholar
  14. Goulet TL (2007) Most scleractinian corals and octocorals host a single symbiotic zooxanthella clade. Mar Ecol Prog Ser 335:243–248CrossRefGoogle Scholar
  15. Jones AM, Berkelmans R, van Oppen MJH, Mieog JC, Sinclair W (2008) A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proc R Soc Lond Ser B Biol Sci 275:1359–1365CrossRefGoogle Scholar
  16. Kontanis EJ, Reed FA (2006) Evaluation of real-time PCR amplification efficiencies to detect PCR inhibitors. J Forensic Sci 51:795–804PubMedCrossRefGoogle Scholar
  17. LaJeunesse TC (2001) Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: In search of a “species” level marker. J Phycol 37:866–880CrossRefGoogle Scholar
  18. LaJeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141:387–400CrossRefGoogle Scholar
  19. LaJeunesse TC, Reyes-Bonilla H, Warner ME (2007) Spring “bleaching” among Pocillopora in the Sea of Cortez, Eastern Pacific. Coral Reefs 26:265–270CrossRefGoogle Scholar
  20. LaJeunesse TC, Reyes-Bonilla H, Warner ME, Wills M, Schmidt GW, Fitt WK (2008a) Specificity and stability in high latitude eastern Pacific coral-algal symbioses. Limnol Oceanogr 53:719–727Google Scholar
  21. LaJeunesse TC, Finney J, Smith R, Oxenford H (2008b) Proliferation of an opportunistic Symbiodinium sp. during the 2005 eastern Caribbean mass coral ‘bleaching’. Proc 11th Int Coral Reef Symp. Ft. Lauderdale, USA (Abstract)Google Scholar
  22. Little AF, van Oppen MJH, Willis BL (2004) Flexibility in algal endosymbioses shapes growth in reef corals. Science 304:1492–1494PubMedCrossRefGoogle Scholar
  23. Loram JE, Boonham N, O’Toole P, Trapido-Rosenthal HG, Douglas AE (2007a) Molecular quantification of symbiotic dinoflagellate algae of the genus Symbiodinium. Biol Bull 212:259–268PubMedCrossRefGoogle Scholar
  24. Loram JE, Trapido-Rosenthal HG, Douglas AE (2007b) Functional significance of genetically different symbiotic algae Symbiodinium in a reef coral symbiosis. Mol Ecol 16:4849–4857PubMedCrossRefGoogle Scholar
  25. Mieog JC, Van Oppen MJH, Cantin NC, Stam WT, Olsen JL (2007) Real-time PCR reveals a high incidence of Symbiodinium clade D at low levels in four scleractinian corals across the Great Barrier Reef: implications for symbiont shuffling. Coral Reefs 26:449–457CrossRefGoogle Scholar
  26. Mieog JC, Van Oppen MJH, Berkelmans R, Stam WT, Olsen JL (2009) Quantification of algal endosymbionts (Symbiodinium) in coral tissue using real-time PCR. Mol Ecol Res 9:74–82CrossRefGoogle Scholar
  27. Pochon X, Montoya-Burgos JI, Stadelmann B, Pawlowski J (2006) Molecular phylogeny, evolutionary rates, and divergence timing of the symbiotic dinoflagellate genus Symbiodinium. Mol Phylogenet Evol 38:20–30PubMedCrossRefGoogle Scholar
  28. Rowan R (2004) Thermal adaptation in reef coral symbionts. Nature 430:742PubMedCrossRefGoogle Scholar
  29. Sampayo EM, Ridgway T, Bongaerts P, Hoegh-Guldberg O (2008) Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc Natl Acad Sci USA 105:10444–10449PubMedCrossRefGoogle Scholar
  30. Santos RS, LaJeunesse TC (2006) Searchable database of Symbiodinium diversity—geographic and ecological diversity (SD2-GED). Available via Auburn University. http://www.auburn.edu/~santosr/sd2_ged.htm. Accessed 7 Nov 2008
  31. Tchernov D, Gorbunov MY, de Vargas C, Yadav SN, Milligan AJ, Haggblom M, Falkowski PG (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci USA 101:13531–13535PubMedCrossRefGoogle Scholar
  32. Thornhill DJ, LaJeunesse TC, Kemp DW, Fitt WK, Schmidt G (2006) Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Mar Biol 148:711–722CrossRefGoogle Scholar
  33. Ulstrup KE, van Oppen MJH (2003) Geographic and habitat partitioning of genetically distinct zooxanthellae (Symbiodinium) in Acropora corals on the Great Barrier Reef. Mol Ecol 12:348–3477CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Adrienne M. S. Correa
    • 1
    • 2
  • M. Danielle McDonald
    • 2
  • Andrew C. Baker
    • 2
    • 3
  1. 1.Department of Ecology, Evolution and Environmental BiologyColumbia UniversityNew YorkUSA
  2. 2.Division of Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiUSA
  3. 3.Wildlife Conservation Society, Marine ProgramBronxUSA

Personalised recommendations