Advertisement

Marine Biology

, Volume 156, Issue 11, pp 2331–2341 | Cite as

Derivation of the reduced life cycle of Thecoscyphus zibrowii Werner, 1984 (Cnidaria, Scyphozoa)

  • Ilka Sötje
  • Gerhard Jarms
Original Paper

Abstract

The species Thecoscyphus zibrowii Werner, 1984 has an exceptional life cycle, which lacks a medusa stage but develops an extraordinary structure (egg sac) for reproduction. Investigation of the life cycle, as well as anatomical and histological studies of the different developmental stages of T. zibrowii were performed to provide evidence for a possible homology of the egg sac with the medusa stage and to determine whether the reduced metagenesis of T. zibrowii is derived from strobilation. The egg sac showed several characteristics, which were compared to those of coronate medusae. The ectodermis of the egg sac had a plate-like appearance and was completely ciliated as is typical for coronate medusae. The number and the location of the gonads were similar to those of coronate medusae. The cnidocysts were significantly larger in the egg sac than in the polyp. A size difference of cnidocysts in the medusa and the polyp stage is known for several Coronatae. Characteristics of egg sac formation were compared to characteristics of strobilation. The formation of the early operculum was similar in T. zibrowii and N. eumedusoides. The constriction of egg sac and strobila occurred in the same mode and the gastric cavities of two egg sacs stayed in contact in a similar fashion to the gastric cavities of the strobila discs. The developmental zones of cnidoblasts of the egg sac and polyp were separated during the formation of the egg sac which showed a similar developmental gradient to a strobila. The existence of all of these consistent characteristics makes it very likely that the egg sac structure was homologous to a medusa. The species T. zibrowii would therefore be derived from a metagenetic ancestor. This species has reduced the medusa generation to the greatest extent within the Nausithoidae and has demonstrated thus far the endpoint of a regressive evolution of the medusa generation.

Keywords

Soft Body Gastric Cavity Developmental Gradient Tissue Bridge Polyp Stage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

As part of a PhD thesis the Biocenter Grindel and Zoological Museum provided the financial support for the study. We are grateful to R. Walter for the technical assistance with the electron microscopy and thankful to B. D. Johnston for the English language revision.

References

  1. Adam H, Czihak G (1964) Arbeitsmethoden der makroskopischen und mikroskopischen Anatomie. Ein Laboratoriumshandbuch für Biologen, Mediziner und technische Hilfskräfte. Fischer, StuttgartGoogle Scholar
  2. Ax P (1995) Das System der Metazoa I. Ein Lehrbuch der Phylogenetischen Systematik. Fischer, StuttgartGoogle Scholar
  3. Broch H (1914) Scyphomedusae, Pennatulacea, Hydroida form the Michael Sars North Atlantic Deep Sea Expedition 1910. Rep Sci Res Michael Sars Exped 3(1):1–24Google Scholar
  4. Bumann D, Jarms G (1997) Localization of digestion activities in polyps of Nausithoe planulophora and Thecoscyphus zibrowii (Coronatae, Scyphozoa, Cnidaria). Helgol Meeresunters 51:477–485CrossRefGoogle Scholar
  5. Calder DR (1971) Nematocysts of polyps of Aurelia, Chrysaora, and Cyanea, and their utility in identification. Am Microsc Soc Trans 90:269–274CrossRefGoogle Scholar
  6. Calder DR (1973) Nematocysts of stages in the life cycle of Stomolophus meleagris, with keys to scyphistomae and ephyrae of some western Atlantic Scyphozoa. Can J Zool 61:1185–1192CrossRefGoogle Scholar
  7. Calder DR (1974) Nematocysts of the Coronatae scyphomedusa, Linuche unguiculata, with a brief reexamination of Scyphozoa nematocyst classification. Chesap Sci 15(3):170–173CrossRefGoogle Scholar
  8. Chapman DM, Werner B (1972) Structure of a solitary and a colonial species of Stephanoscyphus (Scyphozoa, Coronatae) with observations on periderm repair. Helgol Meeresunters 23:393–421CrossRefGoogle Scholar
  9. Claus C (1883) Untersuchungen über die Organisation und Entwicklung der Medusen. Tempsky, PragueGoogle Scholar
  10. Eggers N, Jarms G (2007) The morphogenesis of ephyra in Coronatae (Cnidaria, Scyphozoa). Mar Biol 152:495–502CrossRefGoogle Scholar
  11. Hachmann I (2006) Verteilung der Cnidentypen in den verschiedenen ontogenetischen Stadien bei Chrysaora hysoscella (L. 1766) (Cnidaria, Scyphozoa). Dipl Thesis, Zool Inst Mus, Hamburg, Univ of Hamburg, 111 pGoogle Scholar
  12. Heinrich G (1957) Fibel der histologischen Technik. Fischer, JenaGoogle Scholar
  13. Hingston M, Jarms G, Zibrowius H (2007) The ecology and phylogeny of the mediterranean Nausithoidae (Cnidaria, Scyphozoa). Vie Milieu 57(1/2):67–74Google Scholar
  14. Jarms G (1990) Neubeschreibung dreier Arten der Gattung Nausithoe (Coronata, Scyphozoa) sowie Wiederbeschreibung der Art Nausithoe marginata Kölliker, 1853. Mitt Hambg Zool Mus Inst 87:7–39Google Scholar
  15. Jarms G (1997) The polyps of Coronatae (Scyphozoa), a review and some new results. In: Proceedings of 6th international conference on coelenterate biology, 1995, pp 271–278Google Scholar
  16. Jarms G (2001) The life cycle of Nausithoe hagenbecki sp. nov. (Scyphozoa, Coronatae). Mitt Hambg Zool Mus Inst 98:13–22Google Scholar
  17. Jarms G, Morandini AC, Lang da Silveira F (2002a) Cultivation of polyps and medusae of Coronatae (Cnidaria, Scyphozoa) with a brief review of important characters. Helgol Mar Res 56:203–210CrossRefGoogle Scholar
  18. Jarms G, Tiemann H, Båmstedt U (2002b) Development and biology of Periphylla periphylla (Scyphozoa: Coronatae) in a Norwegian fjord. Mar Biol 141:647–657CrossRefGoogle Scholar
  19. Kawaguti S, Matsuno A (1981) A new species of the Coronatae, Scyphozoa, from the Japan Sea; Atorella japonica n sp. Bull Kawasaki Para Med Coll 1:15–21Google Scholar
  20. Kawaguti S, Yoshimoto F (1973) Electron microscopy on a Scyphozoan, Stephanoscyphus racemosus. Biol J Okayama Univ 16(3–4):47–66Google Scholar
  21. Komai T (1935) On Stephanoscyphus and Nausithoe. Mem Coll Sci Kyoto Univ 10(5):290–339Google Scholar
  22. Komai T (1936) On another form of Stephanoscyphus, found in the waters of Japan. Mem Coll Sci Kyoto Univ 11(3):175–183Google Scholar
  23. Komai T, Tokuoka Y (1939) Further observations on the strobilation of Stephanoscyphus. Mem Coll Sci Kyoto Univ 15(2):127–133Google Scholar
  24. Lang da Silveira F, Morandini AC (1997) Nausithoe aurea n. sp. (Scyphozoa: Coronatae: Nausithoidae), a species with two pathways of reproduction after strobilation: sexual and asexual. Contrib Zool 66(4):235–246Google Scholar
  25. Lesh-Laurie GE, Suchy PE (1991) Placozoa, Porifera, Cnidaria, and Ctenophora. 5. Cnidaria: Scyphozoa and Cubozoa. Microsc Anat Invert 2:185–266Google Scholar
  26. LoBianco S, Mayer P (1890) Spongicola und Nausithoe. Zool Anz 13:687–688Google Scholar
  27. Östman C, Hydman J (1997) Nematocyst analysis of Cyanea capillata and Cyanea lamarckii (Scyphozoa, Cnidaria). Sci Mar 61(3):313–344Google Scholar
  28. Papenfuss EJ (1936) The utility of the nematocysts in the classification of certain Scyphomedusae. Lunds Univ Arsskr N F Avd 2, 31(11):4–19Google Scholar
  29. Precht M, Kraft R (1993) Biostatistik 2: Hypothesentests–Varianzanalyse–nichtparametrische Statistik. Oldenburg, MünchenGoogle Scholar
  30. Romeis B (1989) Mikroskopische Technik. Urban and Schwarzenberg, MünchenGoogle Scholar
  31. Russell F (1970) The medusae of the British Isles. II. Pelagic Scyphozoa with a supplement to the first volume on Hydromedusae. Cambridge University Press, CambridgeGoogle Scholar
  32. Salvini-Plawen L (1978) On the origin and evolution of the lower Metazoa. Z Zool Syst Evol Forsch 16:40–88CrossRefGoogle Scholar
  33. Schuchert P (1993) Phylogenetic analysis of the Cnidaria. Z Zool Syst Evol Forsch 31:161–173Google Scholar
  34. Sötje I (2003) Untersuchungen zur reduzierten Metagenese von Thecoscyphus zibrowii Werner, 1984 (Cnidaria, Scyphozoa). Ph-D Thesis, University of Hamburg, http://www.sub.uni-hamburg.de
  35. Sötje I, Jarms G (1999) Detailed description of Thecoscyphus zibrowii Werner, 1984 (Scyphozoa, Coronatae) with remarks on the life cycle. Mitt Hambg Zool Mus Inst 96:5–13Google Scholar
  36. Spangenberg DB (1968) Recent studies of strobilation in jellyfish. Oceanogr Mar Biol Ann Rev 6:231–247Google Scholar
  37. Weill R (1934a) Contribution à l’étude des cnidaires et de leurs nématocystes I. Recherches sur les nématocystes (morphologie, physiologie, dévelopment). Trav Stat Zool Wimereux 10:1–347Google Scholar
  38. Weill R (1934b) Contribution à l’étude des cnidaires et de leurs nématocystes II Valeur taxonomique du cnidome. Trav Stat Zool Wimereux 11:351–701Google Scholar
  39. Werner B (1965) Die Nesselkapseln der Cnidaria, mit besonderer Berücksichtigung der Hydroida. I. Klassifikation und Bedeutung für die Systematik und Evolution. Helgol Meeresunters 12(1/2):1–39Google Scholar
  40. Werner B (1966) Stephanoscyphus (Scyphozoa, Coronatae) und seine direkte Abstammung von den fossilen Conulata. Helgol Meeresunters 13(4):317–451CrossRefGoogle Scholar
  41. Werner B (1967) Morphologie, Systematik und Lebensgeschichte von Stephanoscyphus (Scyphozoa Coronatae) sowie seine Bedeutung für die Evolution der Scyphozoa. Zool Anz Verh Dt Zool Ges (Suppl) 30:297–319Google Scholar
  42. Werner B (1970) Contribution to the evolution in the genus Stephanoscyphus (Scyphozoa Coronatae) and ecology and regeneration qualities of Stephanoscyphus racemosus. Komai Publ Seto Mar Biol Lab 18(1):1–20Google Scholar
  43. Werner B (1971a) Stephanoscyphus planulophorus n spec., ein neuer Scyphopolyp mit einem neuen Entwicklungsmodus. Helgol Meeresunters 22:120–140CrossRefGoogle Scholar
  44. Werner B (1971b) Neue Beiträge zur Evolution der Scyphozoa und Cnidaria. Acta Salamant Bibl Cienc 36:224–244Google Scholar
  45. Werner B (1973) New investigations on systematics and evolution of the class Scyphozoa and the phylum Cnidaria. Publ Seto Mar Biol Lab 20:35–61Google Scholar
  46. Werner B (1974) Stephanoscyphus eumedusoides n spec. (Scyphozoa, Coronatae), ein Höhlenpolyp mit einem neuen Entwicklungsmodus. Helgol Meeresunters 26:434–463CrossRefGoogle Scholar
  47. Werner B (1984) Cnidaria. In: Gruner H-E (ed) Lehrbuch der speziellen Zoologie, Band 1: Wirbellose Tiere, 2. Teil: Cnidaria, Ctenophora, Mesozoa, Plathelminthes, Nemertini, Entoprocta, Nemathelminthes, Priapulida. 4. Aufl. Gustav Fischer, Stuttgart, pp 11–305Google Scholar
  48. Wilkens H, Peters N, Schemmel C (1979) Gesetzmäßigkeiten der regressiven Evolution. Gustav Fischer, StuttgartGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Biocenter Grindel and Zoological MuseumUniversity of HamburgHamburgGermany

Personalised recommendations